

Department of Geography

Airborne-based CAL/VAL of satellite-based Imaging Spectrometers – Lessons Learned during CHIME-SBG Airborne Campaign 2021

A. Hueni, M. Eastwood, R. Green, M. Rast

https://ares-observatory.ch/esa_chime_mission_2021/

Ingredients for future airborne & in situ CAL/VAL of space-based imaging spectrometers

- Operational flight planning: Synchronization matrices
- Temporal Sampling: Length scales of processes
- Spatial Sampling: Spatial matchups
- Angular Sampling: BRDF compensation
- Standardisation and Automation: Spectral Information Systems
- Traceability and Uncertainty Analysis: international compatibility of data

FLT Decision Concept: Synchro Matrix Fusion

6 Day WX FCST Synchro Matrix (90% Sun)

PRISMA Access Synchro Matrix

Scientific Constraints per TGT Synchro Matrix

CAA Permit Status countries_without_ permit = {'NLD'};

Crew rest constraints

Constraints Fusion

FLT Decision Concept: Synchro Matrix Fusion

Status Quo	Working Matlab code for specific input data formats
Next Steps	 Definition of interfaces (APIs) with satellite operators to receive: TLE's for orbit propagations Programming of acquisitions for targets as function of WX Synchronisation of planning processes between agencies Communication of decisions processes and thresholds Push notifications for CAL/VAL teams
Goal	 Allows sychronisation of: WX models SAT and airborne acquisitions

Temporal Sampling: Length scales of processes

Status Quo	Educated Guess: • Vegetation: <= 1 day • Soils et al: <= 3 days
Next Steps	 What is the rate of change of a process? How large can ∆t be to still allow CAL/VAL?
Goal	 Allows decisions about: Target priorities (temporal) Max ∆t between spatial matchups

Spatial Sampling: Spatial matchups

Status Quo	 Educated guess of CAL/VAL site selection: At least 3 x the pixel size pf TGT system Homogenous
Next Steps	 Make PSFs readily available through a tool that can convolve high resolution imagery Geolocation uncertainty of imagers is needed Tool to compute rating of suitability of sites
Goal	Streamlined selection of CAL/VAL sites by in situ and airborne teams respectively

10m FWHM Convolution Sim.

Angular Sampling: BRDF

Status Quo	Some kernels for various land surfaces exist, e.g. MODIS BRDF Models. Are they sufficient?
Next Steps	 Enabling CAL/VAL with different observational angles Validate and update kernels to match smaller pixel sizes Establish uncertainty budgets
Goal	 CAL/VAL is taking BRDF into account BRDF related uncertainties are known and reported

PRISMA Roll Angle Considerations

Page 7

Standardisation and Automation: Imagery CAL/VAL

Traceability and Uncertainty Analysis

- Identical worldwide
- Century-long stability
- Absolute accuracy

Achieved through:

- Traceability
- Uncertainty Analysis
- Comparison

Status Quo	Abysmal: To our knowledge, no complete, traceable analysis and propagation of uncertainty from L0 or L1 to L2, L3 or L4 exists for any current EO processing chain. *
Next Steps	 Implement uncertainty propagation into EO chains Educate the remote sensing community Supply tools for uncertainty support
Goal	 All measurements and derived products come with uncertainties End users can deal with uncertainties

* Mittaz, J., Merchant, C. J., Woolliams, E. R., 2019. Applying principles of metrology to historical Earth observations from satellites. Metrologia 56(032002), 28.

Department of Geography

Questions?

https://ares-observatory.ch/esa_chime_mission_2021/