Orbital hyperspectral sensors: a dual CAL/VAL test sites

approach

Daniela Heller Pearlshtien, Stefano Pignatti, Bar Efrati, Uta Heiden and Eyal Ben-Dor

By

Dept. of Geography, Remote Sensing laboratory, University Tel-Aviv

The need for VC for orbital (Hyperspectral) Sensors is on the rise

THE REMOTE SENSING

We proposed two sites in Southern Israel for radiometric and thematic VC

Protocols workflow

SRTM

3D Elevation

Amiaz Plain Test Site

Makhtesh Ramon and Amilar Plain

ne materi avera antico atteri

Makhtesh -Ramon

Calcite - SWIR2

Makhtesh Rasson and Andar Phile

test sites-ASD spectral library

600 800 10001200140016001800200022002400 Wavelength (nm)

CalciteGypsum mineBrown questaLaccoliteGypsum soilKaolinite

Brown questa (BQ) -VNIR

Laccolite -VNIR

3. Gypsum mine- SWIR1

Gypsum soil fans -SWIR1

Amiaz Plain Stability

Landsat TM5-2000

Change detected Landsat TM5 2000 VS. OLI8 2021

Landsat OLI8-2021

Amiaz Plain Stability (2)

SAM, ASDS and RMSE for AP

THE REMOTE SENSING LABORATORIES

Makhtesh Ramon Stability

Landsat TM5-1996

Landsat OLI8- 2021

Change detected Landsat TM5 1996 VS. OLI8 2021

Makhtesh – Ramon Stability (2)

MR DATABASE

Link: https://storymaps.arcgis.com/stories/bb5bf09ec7414454 a012bfe9bf4b8545

🗉 💳 🛊 🛤 🚃 Makhtesh Ramon Cal/ Val Site

Makhtesh Ramon Cal/ Val Site

Daniela Heller Pearlshtein & Eyal Ben-Dor | The Remote Sensing Laboratory, Tel Aviv University, Israel

July 14, 2021

Minerals' Locations in the Mak ...

Minerals Locations over Geolog ...

Minerals Abundances in Makhtes... AisaFENIX1K S

Minerals mapping

Geology Maps

Minerals Abundances

Test Sites

Broast Garies Brown Queits Internet and C Brown Questa

台 山 …

lipstoner exticle

Spectral Library

THE REMOTE SENSING

DESIS (DLR)

MR-3D MODELS

THE REMOTE SENSING

PRISMA (ASI)

Sensor RAD/REF Performance

TOA MODTRAN VS. PRISMA L1

AP- RADIANCE

MR- REFLECTANCE

Spectra PRISMA VS. ASD

Sensor Mapping Performance (PRISMA)

Sensor Geometric Performance (PRISMA)

Cross Calibration - over Amiaz Plain Cross Calibration VNIR PRISMA with DESIS

p (A)- PRISMA (June 3rd 2021-8:26 UTC) p(M) –DESIS (May 30 2021-8:53 UTC) $p \lambda h$ –hyperspectral profile of the surface AISAFENIX

SBAF –spectral band adjustment factor

$$SBAF = \frac{p_{(M)}}{p_{(A)}} = \frac{\frac{\int \rho \lambda h \ RSR(M) d\lambda}{\int RSR(M) d\lambda}}{\frac{\int \rho \lambda h \ RSR(A) d\lambda}{\int RSR(A) d\lambda}}$$

$$p'_{(A)} = p_{(A)} \ x \ SBAF$$

Amiaz Plain August 2022

Field Measurements- 90X90 Meters

3 lines= 30 X 3= 90 points Between lines = 48 points Total =138 points

- Charles

Integra @ 2022 CREES / Alfons

regery Date: 9,6,4000 - 30703402.07 0 - 3572233.037 5 citar -245 m - cyc d2 -366 m - (

< 0 3

Goode Far

Cube Outlines90X90 Measurements

ASD : Bare Fiber & SoilPRO

Bare fiber

ASD – Changing from Bare fiber to SoilPRO®

10:10 am

SoilPRO® VS. Bare Fiber

LABORATORIES

Spectrum Average - Cube 90x90 m

Two months apart, the same ASD

AMIAZ PLAIN

<u>Measurements</u> Bare Fiber July- 180 Bare Fiber August- 138 SoilPRO® Augusst - 30

Two years apart (2001-2022 August), different ASD

FS4- FS3

LABORATORIES

Collaborations

- EMIT NASA VAL/CAL Team
- EnMAP DLR- VAL/CAL Team
- PRISMA ASI
- DESIS DLR
- ISA VAL/CAL test sites

THE REMOTE SENSING

Conclusions

- AP and MR are ideal sites for radiometric, spectral, and geometric/thematic validation and calibration.
- Makhtesh Ramon and Amiaz Plain are stable (spatial/ spectral) test sites.
- MR-GIS online spectral database is ready- This data base is updating periodically. We welcome any collaboration to share the data. https://storymaps.arcgis.com/stories/bb5bf09ec7414454a012bfe9bf4b8545
- AP and MR are situated at the same orbital overpass.- advantage for dual sites protocols
- SoilPRO® is a promising assembly to acquire ground truth reflectance data under all conditions.
- Cross validation between spectrometers is essential: SoilPRO® may be an ultimate tool for that.

Acknowledgments:

A heartfelt thanks to all the science teams of : EMIT, ENMAP, PRISMA, and DEISIS, who are collaborating and supporting our research effort.

