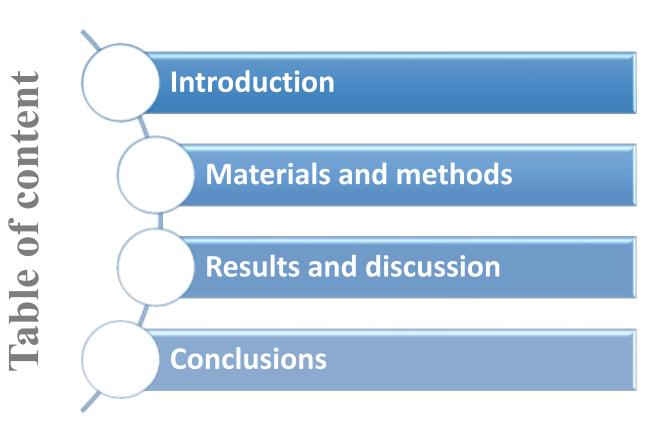


2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

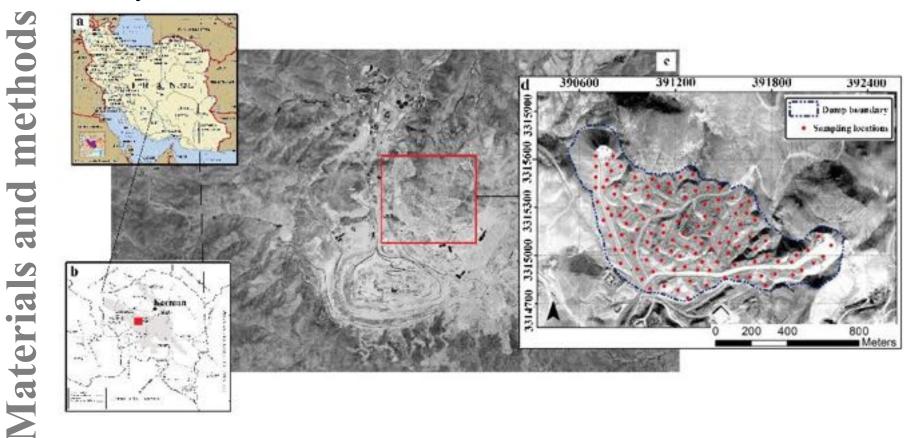

Integration of Sentinel-2 and Landsat-8 Images for Soil Toxic Elements Assessment

Vahid Khosravi, Asa Gholizadeh, Mohammadmehdi Saberioon

19-21 October 2022 - Frascati, Italy

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

2


2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

- As an alternative to traditional sampling and chemical analysis methods, the capability of proximal and remote sensing techniques was investigated to predict As, Cr, Pb, and Zn concentration.
- Sentinel-2A and Landsat-8 OLI provide free medium-spatial resolution multispectral images for several fields of applications including soil contamination determination.
- Integrating of two or more images with different spectral and spatial features contains all features of both single images, hence, it is more informative.
- The current study explored the potential of the individual images of Sentinel-2 and Landsat-8 as well as their fusion on quantifying As, Pb, Zn, and Cr in Sarcheshmeh mine in Iran.

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Study area

🗂 19 – 21 OCTOBER 2022 🛛 FRASCATI, ITALY

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

- Field sampling and laboratory measurements
- 120 soil samples were gathered from dump number 31
- Concentrations of As, Cr, Pb, Zn, pH, clay contents and Fe were measured.
- Samples spectra were obtained using ASD Fieldspec® spectroradiometer.

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Spectral pre-processing

methods

Materials and

- Removing spectral bands (350–399 nm and 2451–2500 nm)
- Transformation to absorbance (log10 (1/R))
- Resampling into 10 nm intervals
- Savitzky–Golay smoothing method
- Savitzky–Golay + first derivative

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Satellite image selection and pre-processing

	Sentinel-2			Landsat 8-OLI	
Band	Wavelength (nm)	Spatial resolution (m)	Band	Wavelength (nm)	Spatial resolution (m)
2	458 to 523	10	2	450 to 515	30
3	543 to 578	10	3	525 to 600	30
4	650 to 680	10	4	630 to 680	30
8	785 to 900	10	5	845 to 885	30
11	1565 to 1655	20	6	1560 to 1660	30
12	2100 to 2280	20	7	2100 to 2300	30

Landsat-8 OLI and Sentinel-2 similar bands and characteristics

L1T Landsat 8-OLI: Atmospheric correction using the fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm

L1C Sentinel-2A: Atmospheric correction through SNAP software with Sen2cor algorithm to convert ToA reflectance values to surface reflection

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Fusion approaches

- Hue-saturation-value (HSV)
- Brovey
- Principal component analysis (PCA)
- Gram-Schmidt (GS)
- Wavelet
- Area-to-point regression kriging (ATPRK)

• Fusion evaluation criteria

- Spectral angle mapper (SAM)
- Root mean square error (RMSE)
- Relative global dimensional synthesis error (ERGAS)

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• The resulting fused bands

Materials and methods

Landsat 8-OLI and Sentinel-2A fused image characteristic	s
--	---

Band	nd Wavelength (nm) Central wavelength (m) Spatial resolution (m)		
β	450-515	482	10		
γ	525-600	562	10		
δ	630-680	655	10		
ε	845-885	865	10		
ς	1560-1660	1610	10		
η	2100-2300	2200	10		

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Featute selection

• Genetic algorithm (GA)

• Modeling

- Partial least squares regression (PLSR)
- Genetic algorithm partial least squares regression (GA-PLSR)
- Leave-one-out cross-validation (LOOCV) on the 75% calibration data set

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Soil samples descriptive statistics and correlations

Descriptive statistics of the selected soil properties

Soil property	Min	Max	Mean	STD	Skewness	CV (%)
As (mg.kg ⁻¹)	4.60	201	51.2	47.3	1.54	92
Cr (mg.kg ⁻¹)	3.00	137	36.3	28.1	1.49	77
Pb (mg.kg ⁻¹)	10.7	1562	251	308	2.39	122
Zn (mg.kg ⁻¹)	60.0	3666	914	885	1.19	97
Fe (%)	1.16	25.3	12.3	6.14	-0.49	50
Clay (%)	6.04	8.44	7.46	0.56	-0.85	7.5
pH	2.08	7.53	4.76	1.31	0.25	28

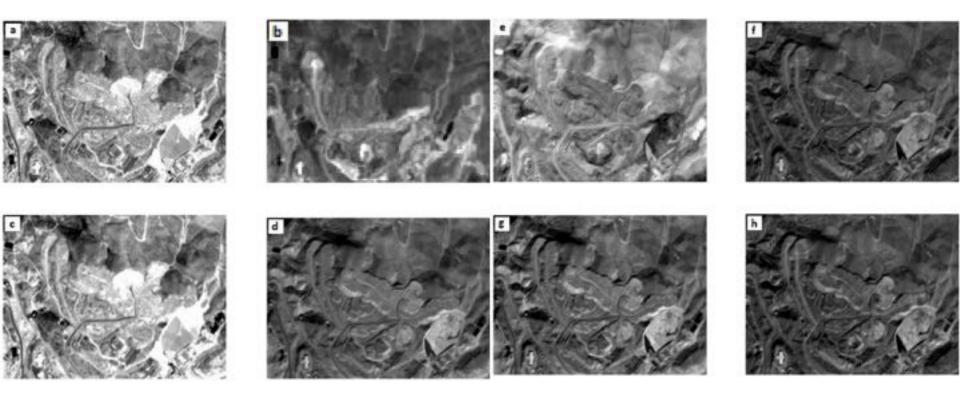
Pearson correlation coefcients of toxic elements, clay minerals, and Feoxides/hydroxides in soil samples

Soil property	As	\mathbf{Cr}	Pb	\mathbf{Zn}	Clay	FexOy
As	1.00	0.26	0.71	0.39	0.57	0.71
Cr		1.00	-0.14	-0.30	0.67	0.62
РЬ			1.00	0.78	-0.44	0.32
Zn				1.00	-0.51	0.38
Clay					1.00	-0.49
Fe						1.00

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Prediction models using samples spectra

Results


Performance of toxic elements prediction models developed using the entire spectra (PLSR) and the selected wavelengths (GA-PLSR) (validation dataset)

Model	Toxic element	R_p^2	RPD	RMSEp	Latent factor
PLSR	As	0.79	3.70	12.8	5
	Cr	0.53	1.82	15.4	5
	Pb	0.51	1.77	163	7
	Zn	0.48	1.64	494	8
GA-PLSR	As	0.88	5.02	9.42	4
	Cr	0.68	2.17	12.9	4
	Pb	0.63	2.07	135	4
	Zn	0.60	1.95	273	5

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Visual performance of the fusion approaches

Visual comparison between original Sentinel-2A (a), original Landsat-8 OLI (b), β -band - HSV (c), β -band - Brovey (d), β -band - PCA (e), β -band - GS (f), β -band - wavelet (g), and β -band - ATPRK (h) images **19-21 October 2022 – Frascati, Italy**

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Performance of fusion approaches

Metric	Fusion approach	β	γ	δ	E	ζ	η
RMSE	HSV	0.17	0.17	0.15	0.18	0.20	0.21
	Brovey	0.06	0.06	0.05	0.07	0.07	0.07
	GS	0.02	0.03	0.02	0.03	0.03	0.03
	PCA	0.12	0.13	0.10	0.13	0.14	0.15
	Wavelet	0.03	0.03	0.02	0.03	0.03	0.04
	ATPRK	0.01	0.01	0.01	0.01	0.01	0.02
SAM	HSV	3.17	3.28	3.11	3.34	3.35	3.56
	Brovey	2.10	2.18	2.03	2.31	2.34	2.37
	GS	0.97	1.13	0.96	1.14	1.17	1.29
	PCA	3.08	3.14	3.03	3.25	3.26	3.49
	Wavelet	0.98	1.08	0.93	1.19	1.24	1.26
	ATPRK	0.05	0.06	0.05	0.07	0.07	0.08
ERGAS	HSV	9.59	8.87	8.35	8.91	9.32	9.35
	Brovey	5.25	5.31	5.06	5.41	5.68	5.92
	GS	5.02	5.21	4.97	5.26	5.32	5.42
	PCA	8.14	8.25	7.06	8.35	8.41	8.56
	Wavelet	5.14	5.17	4.91	5.21	5.29	5.33
	ATPRK	2.93	2.99	2.78	3.11	3.16	3.26

19-21 October 2022 - Frascati, Italy

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

• Applying GA-PLSR model to the images

Performance of toxic elements prediction models developed by GA-PLSR applied to the images pixels spectra

Toxic element	Metric	Sentinel- 2A	Landsat 8- OLI	Sentinel-2A & Landsat 8- OLI (ATPRK)
As	R ²	0.52	0.58	0.69
	RMSE	32.43	21.78	18.23
	RPD	1.65	1.98	2.05
Cr	R ²	0.31	0.24	0.61
	RMSE	40.58	41.55	13.49
	RPD	1.12	1.05	1.78
Pb	R ²	0.29	0.21	0.58
	RMSE	312.89	349.85	129.57
	RPD	1.16	1.01	1.70
Zn	R ²	0.23	0.19	0.53
	RMSE	677.11	735.75	317.31
	RPD	1.09	1.02	1.62

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

- Considering the individual Landsat 8-OLI and Sentinel-2A images, the performance of GA-PLSR model was better on Sentinel-2A data except for As that Landsat-8 provided better prediction results.
- Applying the GA-PLSR model on the ATPRK-fused image could produce more accurate predictions, for all the examined toxic elements, than the other fusion techniques.
- The fusion of Landsat 8-OLI and Sentinel-2A images could enhance the performance of soil toxic elements prediction models.

2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

Thank You