2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy

Towards agriculturally relevant product retrieval from spaceborne spectroscopy data - Status and Challenges

Tobias Hank¹, Matthias Wocher¹, Katja Berger^{2/3}, Jochem Verrelst² & Wolfram Mauser¹

¹Dept. of Geography | LMU Munich | Germany ²Image Processing Laboratories | University of Valencia | Spain ³Mantle Labs Ltd. | Vienna | Austria

Session: 3.1.1 - Vegetation Traits Retrieval and Applications - Part 2 Place: La Collinetta Eventi, Rome (Italy), Room "AIRONE" Time: 08:30-08:38 UTC+2

En

Introduction

The new surge of spaceborne spectrometers leads to hyperspectral acquisitions being...

- available (we can get some data)
- projectable (we can schedule parallel in-situ sampling)
- multitemporal (we can observe time-series)

This finally opens the ground for using hyperspectral data in practical agriculture.

What kind of data would farmers use?

Data that helps with deciding about:

- seeding
- fertilization
- plant protection
- irrigation
- harvesting
- Iong-term melioration effects

What these practical farming problems all have in common, is that they are about quantities and concrete numbers.

The questions mostly boil down to:

- How much?
- When?
- Which?

Long-Term Melioration Effects

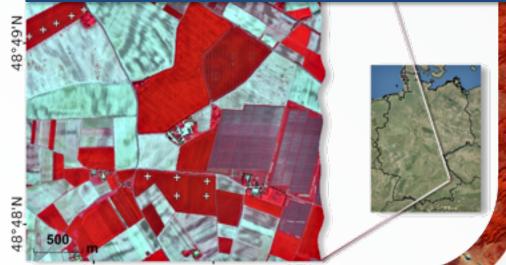
- Agriculture (together with forestry and land use change) is contributing approx. 20% of the global GHG emissions.
- Long-Term storage of carbon in agriculturally used soils may play a role as carbon sink (see talk #177 by Heike Bach).
- "Carbon Farming" is part of the EU Green Deal.

Wouldn't it be nice, if we could measure the amount of carbon stored in agricultural crops (and within their residues) with a spectrometer?

Europe \rightarrow Southern Germany \rightarrow Bavaria \rightarrow Near Straubing \rightarrow Center Coordinates: 48.81° N | 12.73° E

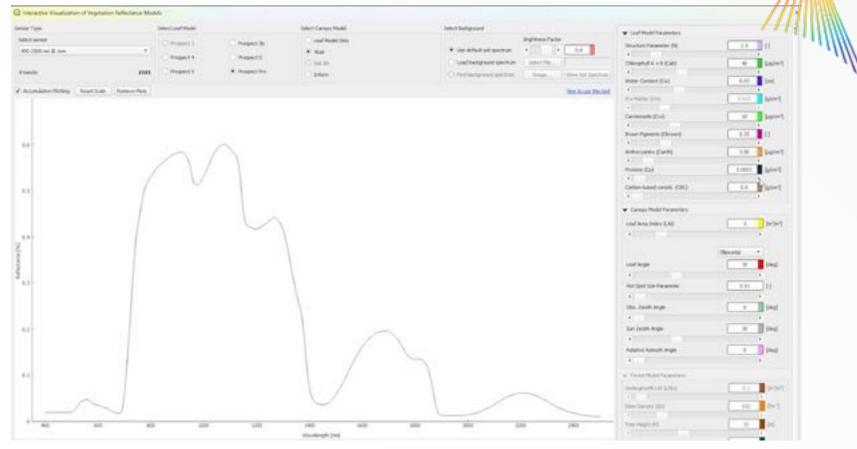
Irlbach site | May 30th 2021

Airborne data:


HyperSense CHIME preparation campaign
AVIRIS-NG airborne acquisitions
(377-2501 nm @425 bands)
→ resampled to EnMAP (233 bands)

In situ data:

- Dry & fresh biomass (AGB_{dry}, AGB_{fresh})
- Carbon content (C_{area})
- Nitrogen content (N_{area})
- Leaf area index (LAI)



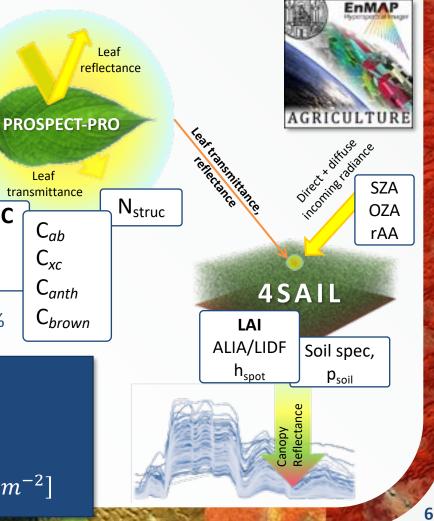
Only 20 measurements Only mono-temporal Only winter wheat at similar growth stages

Spectral Signal of Carbon-Based Constituents

EnMAP-Box

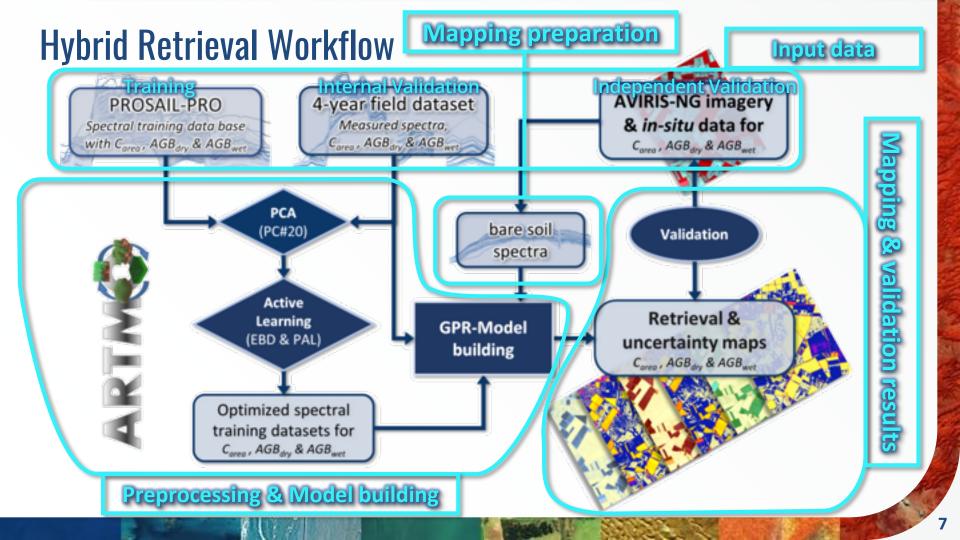
PROSAIL-PRO training database

- 3000 members
- Parameters varied over wide value range


Carbon based constituents (CBC) include sugars, starch, lignin, cellulose and hemicellulose → CBC ≠ C

Conversion factor needed! → Mean C-concentration (leaves|stalks|fruits) = 43.3%

$$C_{area} = \frac{CBC \times LAI \times 10,000}{2.31} [g m^{-2}]$$


$$AGB_{dry} = (C_p + CBC) \times LAI \times 10,000 [g m^{-2}]$$

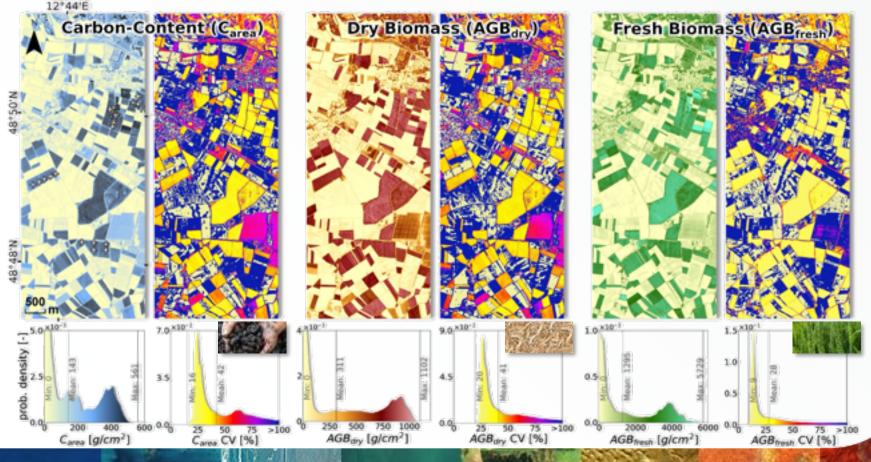
$$AGB_{fresh} = (C_p + CBC + C_w) \times LAI \times 10,000 [g m^{-2}]$$

CBC

Cp

Dimensionality reduction and Active Learning

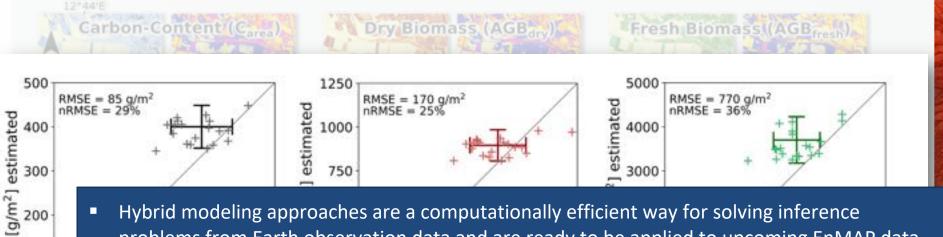
- Application of Principal Component Analysis (PCA) with 20 components (addressing collinearity, maximizing algorithmic interpretability, minimizing information loss)
- Sampling optimization using two Active Learning (AL) approaches
 - Euclidian distance based (EDB)
 - Pool active learning (PAL)


Reduction of training database by 88% from 3000 to 358 members

https://artmotoolbox.com/

Internal Validation of the GPR Model

Spatial Mapping with the GPR Model



Independent Validation of the GPR Model Results

200

0

100

- Hybrid modeling approaches are a computationally efficient way for solving inference problems from Earth observation data and are ready to be applied to upcoming EnMAP data.
- Assimilation of observational data into prognostic terrestrial carbon flux models may improve carbon balance simulations.
- The GPR-Models proved to be flexible, transferable, and reasonably accurate for the retrieval of C_{area}, AGB_{drv}, and AGB_{fresh} from (simulated) EnMAP data.

Conclusions

- The questions of practical agriculture are of a quantitative nature.
 → We need to concentrate on those variables that come with physical units.
- Crop development is a temporally highly dynamic process.

→ We need to learn to make the best possible use of **time-series** from imaging spectrometers.

Models are digital twins of the real world.

 \rightarrow We need to bring everything that needs mapping into the digital world.

- There still are strong deviations between modeled and measured reflectances.
 → We need to get back into the lab and into the field and improve the models.
- At the same time don't let us forget all the data that we have collected during the last 40 years.
 → We need to share and harmonize this data to improve transferability of statistical models.

2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy

Thank You for Your Attention!

tobias.hank@lmu.de

www.geographie.uni-muenchen.de

www.enmap.org

LUDWIG