

Mapping Methane Point Sources with Satellite Imaging Spectroscopy Missions

Luis Guanter^{1,2}, Itziar Irakulis Loitxate¹, Javier Roger¹, Javier Gorroño¹

¹LARS group at the Research Institute of Water and Environmental Engineering, Universitat Politècnica de València (Spain)

²Environmental Defense Fund (EDF), Amsterdam (The Netherlands)

Imaging spectroscopy and methane mapping

- Detection of methane point sources associated to fossil fuel production (e.g. oil & gas extraction, coal mining) is key to guide climate change mitigation efforts
- The potential of imaging spectroscopy in SWIR wavelengths (~2300 nm) for methane mapping demonstrated for the first time in ~2010 with AVIRIS, and then from space in 2015 with Hyperion (Thompson et al.)
- Extension to other satellite imaging spectrometers achieved in the last years (PRISMA, GF-5, ...)

Satellite imaging spectroscopy for methane mapping

- Imaging spectroscopy satellite data are being used to map methane plumes in different oil&gas or coal extraction regions: Permian Basin (USA), Shanxi Coal Mine region (China), Turkmenistan, Algeria, ...
- Available spaceborne imaging spectroscopy missions:
 - **PRISMA** (Italy) / **EnMAP** (Germany): GSD=30 m, SSD~10 nm, medium/low SNR, swath=30 km
 - GaoFen5-02 AHSI (China): GSD=30 m, SSD~8 nm, high SNR, swath=60 km
 - **ZY1 AHSI** (China): same as GF5's but with 2x spectral binning, higher SNR
 - **EMIT** (USA): GSD=60 m, SSD~7 nm, high SNR, swath~80 km, coverage of semi-arid regions

From TOA radiances to \triangle XCH4 maps and emission flux rates

- Maps of Δ XCH4 (methane concentration enhancement) are derived using a data-driven method (matched-filter principle) applied to the 2100-2450 nm window
- Plume identification through visual inspection
- Flux rates (Q, in kg-CH4/h) estimated using the Integrated Methane Enhancement (IME) method
- Sensitivity ~[500-1500] kg/h, depending on surface type and wind speed

Processing flow

Methane concentration enhancement

Methane map + threshold

Manual plume mask

Final plume

Attributing plumes to sources

30-m spatial resolution generally allows the attribution of methane plumes to sources

Compressor emission

Tank battery emission

Irakulis-Loitxate, Guanter et al., Science Advances (2021)

Results from end-to-end simulations for PRISMA

type

Examples of methane plumes from point sources

PRISMA data currently used in a number of methane emission surveys around the world

Guanter et al., RSE, 2021

Survey of methane point emissions in the Permian Basin

- ~30 hyperspectral satellite images processed to methane concentration enhancement maps
- 19 plumes with Q>500 kg/h found from one single overpass of the GF-5 AHSI mission

Irakulis-Loitxate, Guanter et al., Science Advances (2021)

Summary and Outlook

- Methods for the detection and quantification of methane plumes with satellite imaging spectrometers (PRISMA, AHSI, EnMAP, EMIT) are mature
- 2. New retrieval approaches to reduce sensitivity to the background and for offshore mapping under development
- 3. Satellite imaging spectroscopy missions already in use for UNEP's International Methane Emissions Observatory (IMEO)
 - Purpose: to guide methane mitigation efforts through the detection of methane point sources around the world
 - Based on synergies between different classes of methane-sensitive satellites
 - Role of imaging spectroscopy missions: targeted observations for individual source detection

Thank you for your attention

