

Considerations for atmospheric correction of hyperspectral measurements: The FLEX perspective

Jorge Vicent Servera, N. Sabater, P. Kolmonen, G. Matot, J. Verrelst, M. Drusch and J. Moreno

Introduction

- Hyperspectral high resolution measurements are affected by a continuous of gaseous features (H2O, O2, CO2) with coupled absorption and scattering effects
- An accurate modelling of the at-sensor signal is key for the inversion of reflectance
- Goal: sharing the FLEX perspective to the hyperspectral community

Some issues to account for

- Spectral: calibration errors, smile, instrument response, convolution...
- Atmospheric profile
- Aerosol model (opt. properties)
- LUT size and interpolation

SPECTRAL EFFECTS: CONVOLUTION, SPECTRAL CALIBRATION & ISRF

- Integration of continuous energy weighted by the spectral response (ISRF)
 - Multispectral: typically convolve each transfer function with the <u>nominal spectral response</u>
 - Hyperspectral: this does not takes into account the effect caused by the high frequency in absorption regions $\langle E \rangle \langle T \rangle$

$$L = \langle L_0 \rangle + \left(\frac{ET\rho}{\pi(1 - S\rho)} \right) \neq \langle L_0 \rangle + \frac{\langle E \rangle \langle T \rangle \rho}{\pi(1 - \langle S \rangle \rho)}$$

maa

- Spectral calibration errors and ISRF knowledge on atmospheric correction
 - Transfer functions convolved at the <u>nominal ISRF</u>, i.e. fixing barycenter and shape of ISRF
 - Effects of smile, L1B spectral calibration errors and ISRF characterization amplified in hyperspectral data if not taken into account

- FLEX L2 performs a vicarious spectral adjustment to reduce errors in atm. correction
 - Smile explicitly taken into account by convolution of hires transfer functions on the loop
 - → L2 atmospheric correction in focal plane geometry instead of orthorectified product

maa

SPECTRAL EFFECTS: CONVOLUTION, SPECTRAL CALIBRATION & ISRF

- **Spectral sampling of RTM simulations** (for atmospheric LUTs)
 - Spectrally-resolved simulations at pseudo-bands of integrated energy (correlated-k, reptran...)
 - Lower sampling \rightarrow missing spectral information \rightarrow errors in surface reflectance

FLEX: sensitivity analysis to identify the optimal sampling in RTM simulations balancing accuracy vs data volume

Atmospheric vertical profile

- Vertical pressure profile affects depth of absorption and molecular scattering
- E.g. in Sentinel-2 Level-2A processor only MLS and MLW are used

Forward simulation w/ MLS and inversion with other standard profiles

- In FLEX surface pressure is critical for accurate simulation of the O2 band
- For broadband instruments, probably N>2 profiles would be sufficient (TBC) mage

- Modelling aerosol scattering and absorption
 - Aerosol *type* typically considered a variable to define aerosol scattering and absorption
 - Interpolation between types is commonly not implemented to add higher aerosol variability

Forward simulation w/ 8 "continental" aerosol types and inversion with standard "rural" aerosol

FLEX: we directly use aerosol opt. properties as free parameters instead of fixed aerosol types

- FLORIS spectral response → impact in surface reflectance and SIF retrieval
- Aerosol asymmetry → use of climatology to constrain aerosol retrieval
- Compensation of radiometric effects due to vertical profile (real vs "standard" profiles)
- Sensitivity of SIF retrieval to errors in atmospheric correction
- Atmospheric LUT size: computation time, handling data volume

			FLORIS	
	Variable	N grid points	Values	Units
ATM	MODEL	5	MLS, MLW, SAS, SAW, Tropical	-
AER	AOD	7	0.03, 0.05, 0.15, 0.25, 0.36, 0.48, 0.60	-
	α	2	0.02, 2	-
	SSA	2	0.8, 1	
	ASY(g)	2	0.55, 0.8	-
GAS	H ₂ O	6	0.50, 1.12, 1.90, 2.83, 3.91, and 5.00	g/cm ²
	03	2	0.17, 0.38	atm-cm
GEO	Elevation	5	0, 0.72, 1.55, 2.38, 3.00	Km
	VZA	2	0,6	deg
	SZA	12	20.00, 29.47, 38.95, 51.58, 57.90, 61.05, 64.21, 67.37, 70.53, 73.68, 76.84, and 80.00	deg
	RAA	4	0, 40, 140, 180	deg

Reduced LUT (L2RM v3.3)

- 60'500 points (out of 3.6 million)
- 3 min/simu. (12 cores) → Total time: 2 weeks
- File size (single precision) → 70 Gb

Analysis of the results

- FLEX: various strategies are being implemented to achieve the stringent mission requirements (1% error in reflectance) in the O2 bands (for SIF retrieval)
- For broadband instruments these effects are likely less critical but considering them might improve accuracy

Errorsource	Impact in refl. (CHIME)	Some considerations	
Convolution	~0.1%	 Atmospheric correction in local plane For vicarious spectral adjustment Smooth surf. Reflectance → orthorect. 	
Spectral calibration	Up to 5-10%		
RTM sampling	Up to 1% (w/ 1cm-1)	LUTs in native RTM resolution	
Atmospheric profile	Up to 1-5%	 Explicitly accounting for spectral calibration DTM compliant 8 LUT data values 	
Aerosol type	10% (at 400nm)	 Kind sampling & Lot data volume Check impact of atm. profile 	

- Aerosol type vs opt. properties
- LUT size: consider emulation as alternative!

BACK-UP SLIDES

2 n d

ESA's

Hyperspectral

Workshop

0 c t

2022

Overview of ESA's FLEX Earth Explorer mission

- Mission objective: to estimate actual photosynthesis rate and early stress indicators from measuring vegetation SIF from space
- Processing chain: merging FLEX and S3 data in FLORIS focal plane geometry, atmospheric correction, decoupling of SIF from reflected signal, biophysical parameters retrieval and photosynthesis

Feature	FLEX	CHIME	
Spectral range	500-780 nm	400-2500 nm	
Spectral res. and sampling	 ≤3 nm (0.3 nm in 02) ≤2 nm (0.1 nm in 02) 	≤10 nm	$\begin{array}{c c} \mathbf{x} & \mathbf{x} \\ $
SNR	115 (NIR) up to 1015 (in 02A)	250-500 (up to 2200 for water)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Spatial res.	300 m	≤30 m	
Orbit	Sun-synchronous (10:30-11:30hLTDN)		500 550 600 650 700 750 Wavelength (nm)

Overview of FLEX atmospheric correction

- Water vapor: based on APDA differential absorption on OLCI radiance data
- Aerosol optical properties
 - 1. SLSTR dual-viewing algorithm (DVA):
 - $\rho_{(Ob)} = k \rho_{(N)}$ where k is assumed spectrally constant and retrieved from SWIR channels

0.8

0.7

0.6

- 2. Refinement using FLORIS data at O2A band
 - Shape of O2A absorption sensitive to aerosol opt. properties
 - Difference measured and simulated (w/ DVA results) radiance allows disentangling SIF contribution from aerosol scattering
 - Use of climatology to constrain retrieval

ATMOSPHERIC LUT SIZE & INTERPOLATION

- LUT size (in 10⁶ points): 0.6 (sen2cor), 1.3 (S3 SYN), 3.6 (FLEX)
 - Full resolution: 180 Gb for 1.8.10⁶ points (float)
 - CHIME resolution (~200 bands): 8 Gb
- Run time (400-2500 nm @5cm⁻¹): ~1.5 min/simulation
 - Total run time: 120 days (1.8.10⁶ points in 16 cores)
- Total LUT
- Atmospheric LUT size: computation time, handling data volume

ഗ

Thank you for your attention.

jorge.vicent-servera@magellium.fr