2ND WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY

DESIS Calibration: Status and Results after 4 Years of Operation

Emiliano Carmona¹, Kevin Alonso¹, Martin Bachmann², Raquel De Los Reyes¹, Uta Heiden¹, David Marshall¹, Rupert Mueller¹ (1) DLR German Aerospace Center, Remote sensing Technology Institute, Oberpfaffenhofen, Germany (2) DLR German Aerospace Center, German Remote Sensing Data Center, Oberpfaffenhofen, Germany

Knowledge for Tomorrow

DESIS Instrument

• Hyperspectral instrument consisting of a Three-Mirror-Anastigmat (TMA) telescope combined with an Offner-type spectrometer

Mission Instrument	MUSES/DESIS
Target lifetime	2018-2023
Off-nadir tilting (across-track, along-track)	-45° (backboard) to +5° (starboard), -40° to +40° (by MUSES and DESIS)
Spectral range	400 nm to 1000 nm
Spectral Sampling (res., acc.,bands)	2.55 nm, 0.5 nm, 235 bands. Binning: 118 , 79 , 60 bands
Spectral response	Gaussian shape, 3.5 nm FWHM
Software Binning (sampling distance, number bands)	Binning 2 (5.1 nm, 118 bands) Binning 3 (7.6 nm, 79 bands) Binning 4 (10.1 nm, 60 bands)
Radiometry (res., acc.)	13 bits, ~10%
Spatial (res., swath)	30 m, 30 km (@ 400 km)
SNR (signal-to-noise)	195 (w/o bin.) / 386 (4 bin.) @ 550 nm
Instrument (mass)	93 kg
Capacity (km, storage)	2360 km per day, 225 GBit

Calibration unit

- Equipped with 9 different types of LEDs. It allows to measure signal with different LED types
- 1 Calibration measurement every 1 or 2 weeks for 3 years
- It allows for precise spectral stability measurements:

Spectral Calibration Results

- Mostly obtained from on-board Spectral Calibration. Very precise measurement of LEDs profile provides accurate values
- Observed simultaneous jumps of 0.5 nm in all LEDs and all pixels across-track. Correlated with different temperature gradients inside DESIS sensor. Two populations: low-temperature gradient (LTG) and hightemperature gradient (HTG)

Calibration Unit Long Term Data

- First bands show a fast degradation reaching 50% of initial performance 1000 days after reference point. The decrease is very close to linear.
- Good approximation for this decrease with a gaussian fit:

Decrease 1000 days = $\frac{A}{\sigma} * \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

- Where x is wavelength and A, μ , σ are 3 parameters fitted from the calibration data
- Small discrepancies in first 2 bands and across-track

Vicarious Calibration Concept

- Two main goals:
 - 1. Consistent relative response in spatial and spectral direction of the sensor (use uniform scene images)
 - 2. Correct absolute radiance scale (use RadCalNet reference data)
- Use a sequence of configurable steps to achieve both goals:

 Original sequence of steps followed on first ground-to-space calibration. Newer calibration updates require simpler sequences

Absolute radiometric scale

- Use TOA Reflectance from RCN sites for estimation of absolute calibration
- Compare DESIS measurement against:
 - RCN measurement (10 nm)
 - DESIS team TOA calculation from RCN BOA
- Compute deviations of DESIS w.r.t. both references:

Compute radiometric coefficient updates based on observed deviations

Latest Vicarious calibration data

- New calibration periods continue using baseline vicarious calibration used in DESIS
- Data in period #4 calibrated with calibration in period #4

- Similar results as seen in other periods
- After calibration bias is corrected, but RMS below 500 nm is significant larger than above 500 nm

Latest Vicarious calibration data

- New calibration periods continue using baseline vicarious calibration used in DESIS
- Data in period #5 calibrated with calibration in period #5

 As indicated by LED calibration data, no sign of degradation below 500 nm on Period 5 (starts 01.07.2022)

Comparison with Radiometric update from Vicarious Calibration

- Unfortunately model does not seem to match well the data obtain in Vicarious calibration
- The plot shows relative change of detector performance obtained from the Vicarious calibration
- Main similarity with LED data:
 - CAL data reproduces the fast decrease in performance below 500 nm
- Main differences are:
 - CAL data shows a maximum decrease down to 40% from the initial values, while the Vicarious data shows a maximum decrease down to 60%

Comparison with Radiometric update from Vicarious Calibration

- Unfortunately model does not seem to match well the data obtain in Vicarious calibration
- The plot shows relative change of detector performance obtained from the Vicarious calibration
- Main similarity with LED data:
 - CAL data reproduces the fast decrease in performance below 500 nm
- Main differences are:
 - CAL data shows a maximum decrease down to 40% from the initial values, while the Vicarious data shows a maximum decrease down to 60%
 - CAL data does not reproduce decrease of ~2% between periods (3.4%/year) above 500 nm
 - CAL decrease below 500 nm is constant until July 2021, but vicarious results show different intensities for different periods

Summary & Outlook

- Vicarious calibration is the baseline calibration method of the DESIS imaging spectrometer
- Fast change of radiometric performance below 500 nm in DESIS is challenging for this calibration method (~20% degradation / year)
- Above 500 nm the current calibration approach guarantees that difference between periods is ≤2% (~3.4% / year)
- In order to improve the calibration under 500 nm, we developed a model to characterize the sensor behavior using the on-board spectral calibration data
 - Model reproduces well trends, but LED data are not accurate enough for radiometric calibration
- Evidence of no further degradation below 500 nm after August 2021 from LED data, confirmed with vicarious data

Thank you for your attention !

Knowledge for Tomorrow

Extra

Teledyne Brown Engineering (TBE, USA) and **DLR** have partnered to build and operate the DLR Earth Sensing Imaging Spectrometer (**DESIS**) from the Teledyne-owned Multi-User System for Earth Sensing (**MUSES**) Platform on the ISS

MUSES provides accommodations for two large and two small hosted payloads and provides **core services** for the instruments

DESIS, the hyperspectral sensor developed by DLR, is the first payload of MUSES.

DLR also established the Ground Segment and licensed the SW processors to Teledyne running in an Amazon Cloud

DESIS – Timeline and Results

Since 2018 ~130.400 scenes processed and archived

~23.000 scenes in USA

~8.600 scenes in Europe

First DESIS User workshop (September 2021) Publication at The International Archives of the ISPRS

16

DESIS Vicarious Calibration

Obtain consistent relative response in spatial and spectral directions:

- Flat response on homogenous input
- Smooth pixel to pixel transitions
- Consistent behavior across-track

Obtain absolute radiance scale

"Vicarious calibration of the DESIS imaging spectrometer", E. Carmona et al., IGARSS2021

Vicarious calibration data

"Vicarious calibration of the DESIS imaging spectrometer", E. Carmona et al., IGARSS2021

- Input scenes not evenly distributed in time
- Particularly challenging to have abundant good quality Radcalnet (RCN) scenes
- Calibration updates arrive several months after data acquisition

Band #

Absolute radiometric scale

- Use selected "calibration" scenes from RCN and perform a fit to mean value (2 times in steps sequence) in order to obtain a per-band factor
- Use Average from 2 TOA reference data: RadCalNet provided (10 nm), DESIS calculated (DESIS resolution)

Latest Vicarious calibration data

- New calibration periods continue using baseline vicarious calibration
- Data in **periods #4** and **#5** with calibration for period **#3**:

900

Wavelength (nm

Results from 3 calibration periods: All RCN Data Results

- Absolute calibration adjusted with RCN data for 3 different periods
- Absolute calibration uses only part of RCN scenes (19)
 - good atmospheric conditions
 - below 50 degrees Sun Zenith Angle
- These summary plots show 19 RCN scenes used for calibration

Results from 3 calibration periods: All RCN Data Results

- Absolute calibration adjusted with RCN data for 3 different periods
- Absolute calibration uses only part of RCN scenes (19)
 - good atmospheric conditions
 - below 50 degrees Sun Zenith Angle
- These summary plots show all RCN scenes (30 scenes)

Temperature gradients

• Relationship between temperature values used to compute temperature gradients for spectral correction

L1C Processing (and Calibration)

(Landsat 8 Pan, ~18 m CE90) Selected GCP to improve DES sensor model (on-the-fly and boresight calibration) Others are used for Quality Assessment

Reference Image

Railroad Valley, USA 13-12-2018 18:23:11 UTC 38.4467°N 115.7512° W Sun: 64.14°, 160.58° Incident Angle: 0.8°

L1C Processing (and Calibration)

Reference Image (Landsat 8 Pan, ~18 m CE90)

Accuracy w.r.t. Reference 177 scenes #GCP: average 210 per sce

#GCP: average 210 per scene #Control Points: average 969 per scene

In case image matching works for a scene RMSE (east) = $21.0 \pm 5.9 \text{ m}$ RMSE (north) = $21.4 \pm 6.0 \text{ m}$

In case of no-matching values rely on boresight calibration:

RMSE ~289 m (across); ~496 m (along), but with peak values up to 1 km

Boresight angles are stable over time:

DESIS Image (after coarse rectification)

Check parameters "orthoRMSE_x" or "orthoRMSE_y". When value is -1 it means that no matching could be achieved

Railroad Valley, USA 13-12-2018 18:23:11 UTC 38.4467°N 115.7512° W Sun: 64.14°, 160.58° Incident Angle: 0.8°