DESIS / EnMAP L2A processor

R. de los Reyes on behalf the DESIS / EnMAP GS

EOC, DLR

Knowledge for Tomorrow

DESIS / EnMAP – L2A processor

PACO – Overview : Atmospheric Correction for Land

Validation of Bottom-Of-Atmosphere (BOA)

L2A – BOA validation: Gobabeb

- BOA reflectance after atmospheric correction: processor **consistency** through **multi- and hyper-spectral** sensors
 de los Reyes, et al., 2020, Sensors
- 7 scenes for SZA < 30°, off-nadir < 10°
- ROI = 500 m (U_{RCN} < 3%) < 5% (requirement)

Dominated by the blue wavelengths (AOT)

L2AF – BOA validation (AOT Forced): Gobabeb

7 scenes for SZA < 30°, off-nadir < 10°
BOA uncertainty (ρ < 10%) comes from AOT uncertainty

 $U_{\rho,RCN} = (0.04 \pm 0.02) * \rho_{RCN} + (0.011 \pm 0.006)$

 $U_{\rho,RCN} = (0.014 \pm 0.002) * \rho_{RCN} + (0.005 \pm 0.000)$

L2A – comparison with other sensors

- Cross-comparison between sensors ground reflectance (ρ) (PACO products):
 - Minimization of uncertainties due to difference in processors and LUTs
 - *Qualitative* evaluation < 1 σ .

Barreal Blanco (PICS) 12.03.2019 $\Delta t \sim 50 \text{ min.}$ $\Theta_{sun} \sim 40^{\circ}$ $\theta_{S2,L8, DESIS} < 10^{\circ}$

All three sensors processed with PACO: U_{Si} = 0.04 * ρ_{BOA} + 0.011

Conclusions from DESIS / EnMAP L2A validation

- DESIS / EnMAP L2A in agreement with ground measurements and other sensors.
- Atmosphere characterization: linear function (AOT/WV) + OFFSET is still possible
- Surface reflectance (BOA):
 - <u>RadCalNet Gobabeb</u>: U_{BOA} < 5% (AOT < 0.1, SZA < 30° and off-nadir < 10°)
 - Consistent results with multi-spectral sensors:
 - Uncertanties of Sentinel-2 with RadCalNet
 - Cross-validation with sensors (Landsat-8, Sentinel-2): PICs sites.
 - $U_{BOA}(1\sigma) = 0.04 * \rho_{BOA} + 0.011 \rightarrow$ non-linear fit needed for BOA requirements.
- More in-situ data (AOT, ρ_{BOA}) will help in the uncertainty estimation.

Backup slides

Knowledge for Tomorrow

L2A – BOA validation: La Crau

- BOA reflectance after atmospheric correction with $\rm N_{DDV}$ > 5%
- SZA < 30° and off-nadir < 10°
- ROI = 500 m (U_{RCN} < 5%)

PACO: Python-based Atmospheric Correction

- Correct the Earth's atmosphere effects (i.e. absorption and scattering) in the data from a remote sensing sensor (Top-Of-Atmosphere, L1C)
- Result: Bottom-Of-Atmosphere (L2A) reflectance, i.e. percentage or fraction of sun light reflected by the Earth ground.

L2A – AOT validation

de los Reyes, et al., 2020, Sensors

1.4

 $U_{AOT} = 0.29 * AOT (550 nm) + 0.03$

- N=47
- > 5% DDV pixel
- ROI: 9km
- Higher uncertainty in VNIR sensors.
- RMSE ~ 0.15 (preliminary)

 $U_{AOT} = -(0.6 \pm 0.3) * AOT (550 nm) + (0.2 \pm 0.0)$

Not as many scenes as for Sentinel-2

L2A – WV validation

 $U_{WV} = (0.08 \pm 0.02) * WV (cm) + (0.06 \pm 0.03)$

 $U_{WV} = 0.02 * WV (cm) + 0.13$

- N=141
- ROI: 9 km
- Mean over clear land pixels
- Improvement in estimation in hyperspectral vs multispectral.

Conclusions from DESIS / EnMAP L2A validation

- DESIS / EnMAP L2A in agreement with ground measurements and other sensors.
- Atmosphere characterization:
 - **RMSE_{AOT} ~ 0.15** (DDV > 5%) (preliminary)
 - U_{wv} (1σ) < (8 ± 2) %, with an offset of (0.06 ± 0.03) cm
- Surface reflectance (BOA):
 - <u>RadCalNet Gobabeb</u>: U_{BOA} < 5% (AOT < 0.1, SZA < 30° and off-nadir < 10°)
 - Consistent results with multi-spectral sensors:
 - Uncertanties of Sentinel-2 with RadCalNet
 - Cross-validation with sensors (Landsat-8, Sentinel-2): PICs sites.
 - U_{BOA} (1σ) = 0.04 * ρ_{BOA} + 0.011 (preliminary) gives < 1σ difference in La Crau, including AOT estimation with DDV pixels.
- More in-situ data (AOT, ρ_{BOA}) will help in the uncertainty estimation.