REMOTE SENSING LAB

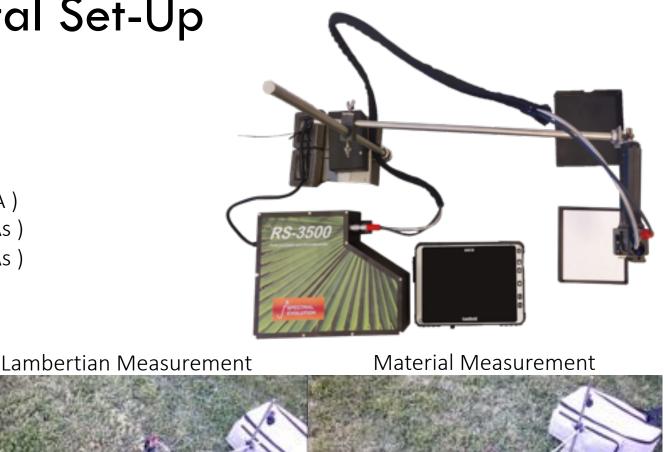
Use of hyperspectral measurements for Sentinel-2 image classification for the regions of Berlin and Heraklion

Giannis Lantzanakis, Natalia Pynirtzi, Emmanouil Panagiotakis, Konstantinos Politakos, Dimitris Poursanidis, Nektarios Chrysoulakis

Remote Sensing Lab | IACM | http://rslab.gr

20/10/2022

2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy



Assistment to the Gamping Gamma

Equipment & Experimental Set-Up

RS-3500 Spectral evolution

- Spectral Range: 350-2500nm
 - @2.8nm (350-1000nm) (512 elements Si PDA)
 - @8nm (1000-1900nm) (256 elements InGaAs)
 - @6nm (1900-2500nm) (256 elements InGaAs)
- Optical Fiber with field of view: 22°
- Vertical distance: 20cm
- Rugged Handheld Table
 - Real-time, wireless instrument control
 - Built-in GPS, camera
- DARWin software for data acquisition
 - 5x10 measurements of Lambertian
 - 5x10 measurements of Material
 - 2151 interpolated spectral bands (1nm)

Measurements in Heraklion & Berlin

Heraklion (to date, 334 Different Spectral Signatures have been collected)

Berlin (to date, 225 Different Spectral Signatures have been collected)

Material Categorization

٠

I	D	

.

\succ	ASPcxxx
~	

- BRCcxxx \geq
- BUScxxx \triangleright
- CAOcxxx \geqslant
- CEMcxxx \triangleright
- CERcxxx
- \triangleright CONcxxx
- ELAcxxx \triangleright
- GEOcxxx \geq
- GLScxxx \triangleright
- GRNcxxx
- \geqslant GRScxxx
- GRVcxxx
- \geq LIMcxxx
- MRBcxxx \triangleright
- \geq MTLcxxx

 \geq

 \geq

 \geq

- MORcxxx
 - MUDcxxx
- PLScxxx \geqslant \geq
- \triangleright ROKcxxx
- SNDcxxx \geq
- SODCXXX
- SOLcxxx
- \geqslant STNcxxx \geq
 - TARcxxx \geq
 - TILCXXX

 \geq Asphalt Brick \geq Bush \geq Caoutchouc \geq

Material

 \geq

 \geq

 \geq

 \geq

 \geq

 \geq

 \geq

 \geq

٠

- Cement
- Ceramic Green (G)
- \geq Concrete
- Elastic Acrylic \geq
 - Geotextile
 - \geq Glass
 - Granit
 - Red (R) White (W)

Color

>

 \geq

Beige (I)

Black (K)

Blue (B)

Cyan (C)

Grey (E)

Pink (P)

Orange (O)

Purple (U)

Brown (F)

- Yellow (Y)
- ...
- Lime Marble
- Metal \geq

Sod

Soil

Tartan

Tile

Grass

Gravel

- Mortar
- Mud \geq
- Plaster
- Rock
- Sand
- Stone
- - WOOcxxx \geq Wood

- Surface Structure ٠
 - \geq Bare
 - Blocks \geq
 - Burnt \geq
 - Corrugated \geq
 - Cracked \geq
 - Dry
 - **Fine Roughness** \geq
 - Glazed
 - \geq
 - \geq

 - \geq
 - \geq

 - \geq

 - \geq

- Usage •
 - \geq Bench
 - \geq Façade
 - \triangleright Ground
 - \triangleright Roof

- Status
 - \geq Dusty
 - New \triangleright
 - Weathered \geq

New Painted Blue Gravel (Ground)

٠

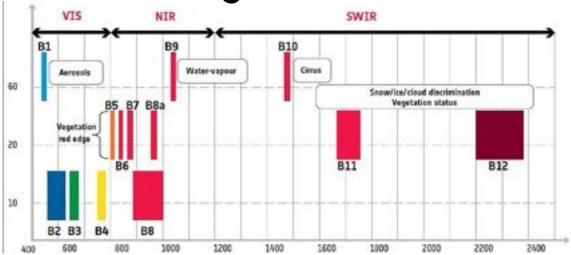
[1] Ilehag, R.; Schenk, A.; Huang, Y.; Hinz, S. KLUM: An Urban VNIR and SWIR Spectral Library Consisting of Building Materials. Remote Sens. 2019, 11, 2149. https://doi.org/10.3390/rs11182149

- Matte Mosey
- Natural
- Painted \geq
- Photosynthetic
- Porous
- Reflective \geq
- Smooth
- Uneven
- Varnished
- ...

Hyperspectral Pre-Processing

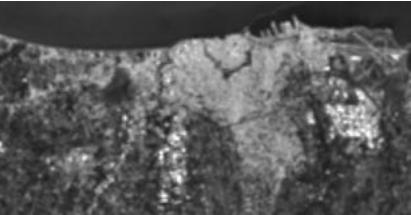
Variables

- L is the Mean of 5x Lambertian Measurements (each measurement is the mean of 10 measurements in 5s timestamp)
- x is the Mean of 5x Material Measurements (each measurement is the mean of 10 measurements in 5s timestamp)
- S_L is the Spectral Response Function of the Lambertian
- S_A & S_B is the Spectral Response Function for Sentinel-2A and Sentinel-2B respectively
- R_A & R_B is the corresponding reflectance of the Hyperspectral Signatures in Sentinel-2A/2B respectively bands (b)

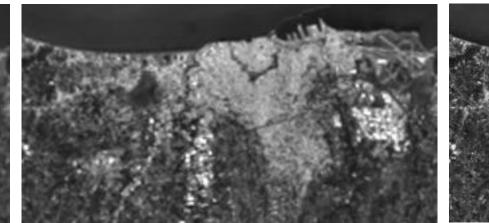

Pre-Processing Steps

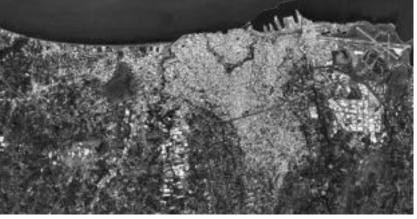
- Removing wavelengths in which the solar radiation does not penetrate the atmosphere: 1340nm-1450nm, 1780nm-1970nm and 2300nm-2500nm [1]
- Measurements with STD > 2% in the reflectance of the remaining wavelengths are excluded from the Library.

$$\geq R_A(b) = \frac{\sum \left(\frac{S_A(b,\lambda) \cdot x(\lambda)}{S_L(\lambda) \cdot L(\lambda)}\right)}{\sum S_A(b,\lambda)} \qquad \qquad R_B(b) = \frac{\sum \left(\frac{S_B(b,\lambda) \cdot x(\lambda)}{S_L(\lambda) \cdot L(\lambda)}\right)}{\sum S_B(b,\lambda)}$$
[2]

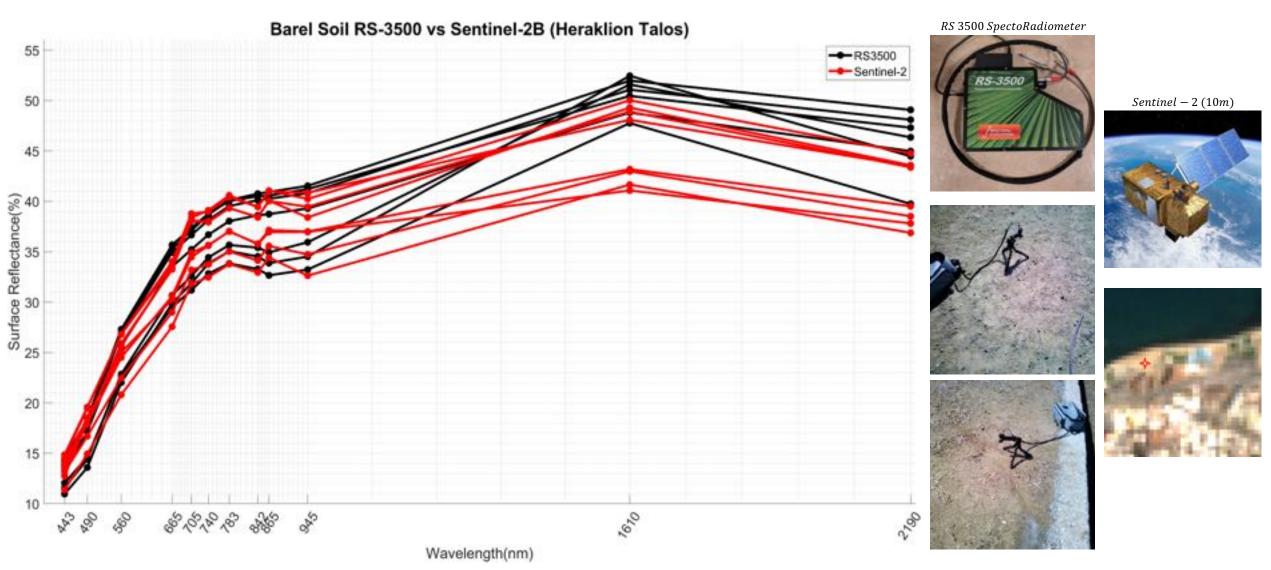

[1] Ilehag, R.; Schenk, A.; Huang, Y.; Hinz, S. KLUM: An Urban VNIR and SWIR Spectral Library Consisting of Building Materials. *Remote Sens.* 2019, *11*, 2149. <u>https://doi.org/10.3390/rs11182149</u>
[2] Wu, W., Liu, X., Xiong, X., Li, Y., Yang, Q., Wu, A., et al. (2018). An accurate method for correcting spectral convolution errors in intercalibration of broadband and hyperspectral sensors. *Journal of Geophysical Research: Atmospheres*, 123, 9238–9255. <u>https://doi.org/10.1029/2018]D028585</u>

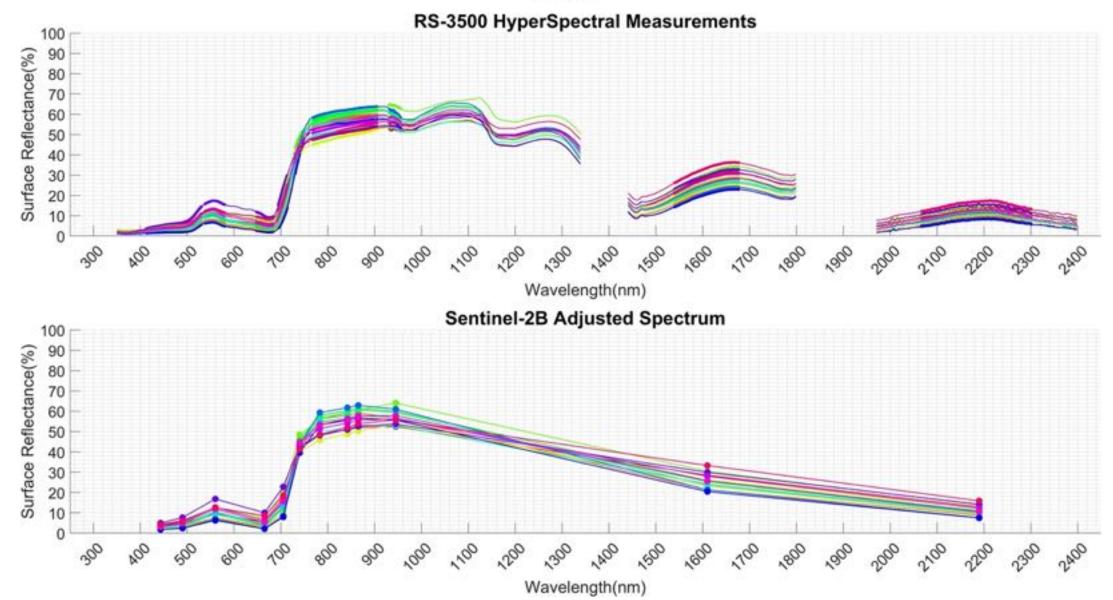
Sentinel-2 Pre-Processing



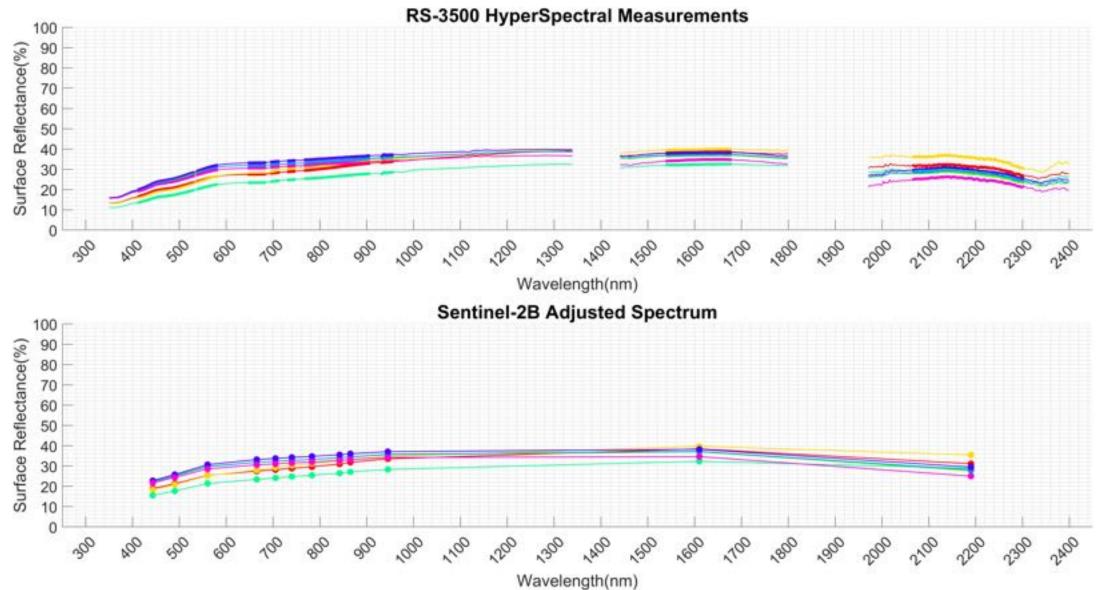

B01 Super-Resolving (ESA SNAP) 10m [3]

B01 Super-Resolution(Matlab) 10m [4]

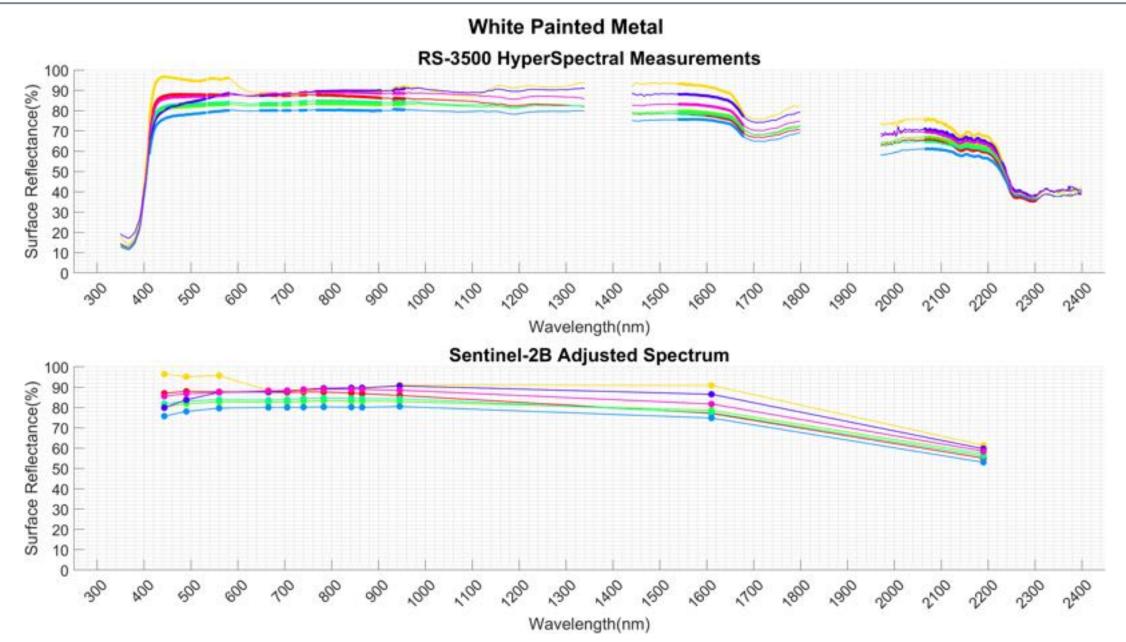

B01 Sentinel-2B L2A (Original 60m)


[3] N. Brodu, "Super-Resolving Multiresolution Images With Band-Independent Geometry of Multispectral Pixels," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 55, no. 8, pp. 4610-4617, Aug. 2017, doi: 10.1109/TGRS.2017.2694881.
[4] C. Lanaras, J. Bioucas-Dias, E. Baltsavias and K. Schindler, "Super-Resolution of Multispectral Multiresolution Images from a Single Sensor," *2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW*), 2017, pp. 1505-1513, doi: 10.1109/CVPRW.2017.194.

Sentinel-2 L2A Spectrums vs Adjusted Hyperspectral

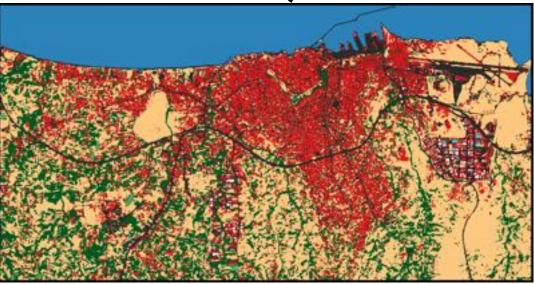

Giannis Lantzanakis | 2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy | 20 October 2022 | Frascati | Slide 7

Grass



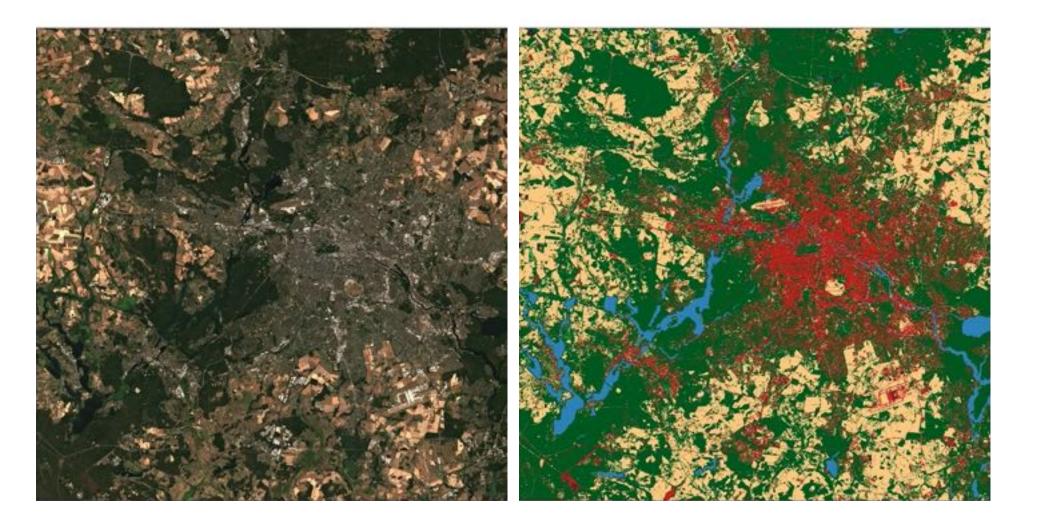
Giannis Lantzanakis | 2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy | 20 October 2022 | Frascati | Slide 8

Grey Cement


Giannis Lantzanakis | 2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy | 20 October 2022 | Frascati | Slide 9

Giannis Lantzanakis | 2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy | 20 October 2022 | Frascati | Slide 10

Heraklion Results (using X-SVM¹⁵¹ model)



A/A	Water	Low Veget	High Veget	Soil	Asphalt	Concrete	White Metal	Grey Metal	User Acc %	
Water	50	0	0	0	1	0	0	0	98.0%	Water
Low Veget	0	43	2	0	0	0	0	0	95.6%	Grass High Vegetation
High Veget	0	5	48	3	0	2	0	0	82.8%	
Soil	Soil 0	1 0	45	5	4	1	14	64.3%	Bare Soil	
Asphalt	0	0	0	1	38	4	1	1 84.4% Paved Cement/Concr		
Concrete	0	0	0	1	6	39	0	2	81.3%	White Metal
White Metal	0	0	0	0	0	0	48	0	100.0%	Grey Metal
Grey Metal	0	1	0	0	0	1	0	33	94.3%	
Prod Acc	100.0%	86.0%	96.0%	90.0%	76.0%	78.0%	96.0%	66.0%	86.0%	

[5] G. Lantzanakis, Z. Mitraka and N. Chrysoulakis, "X-SVM: An Extension of C-SVM Algorithm for Classification of High-Resolution Satellite Imagery," in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 3805-3815, May 2021, doi: 10.1109/TGRS.2020.3017937.

Berlin Results (in progress...)

Outline

- We are developing an Urban Hyperspectral Library (currently in Berlin & Heraklion) with as much possible different material are included in Urban Environment.
- To date, the Hyperspectral Library includes 334 Different Spectral Signatures from the area of Heraklion and 225 from the area of Berlin.
- The library can be used to classify accurately Sentinel-2 images
- We plan to expand the Hyperspectral Library to other European cities focusing on roofing materials is lacking
- We plan to repeat the experiment with other Satellites, e.g. Planet and Worldview

JURSE 2023 Heraklion - Crete

17 - 19 May 2023

http://jurse2023.org/

Contact info

Giannis Lantzanakis lantzanakis@iacm.forth.gr tel. +30 2810 391773 FORTH/IACM http://rslab.gr

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 855005)

European Research Cox I statisticated by Par Laborator 1