UNIV. OF VALENCIA MAGELLIUM

HARMONIZATION OF **ATMOSPHERIC LOOK-UP TABLES USING THE ALG TOOLBOX**

HYPERSPECTRAL WORKSHOP 2022

JORGE VICENT SERVERA, JOCHEM VERRELST & JOSE MORENO

Context

The development of satellite data processing chains is a costly process that involves important resources to achieve the required mission objectives. However, many developments share some commonalities, at least conceptually, that invite for harmonization.

Atmospheric radiative transfer models

Software tools that simulate the scattering and absorption of electromagnetic radiation through the amotpshere. Widely applied in satellite simulation and **atmospheric correction**.

In this presentation...

We propose a set of guidelines to harmonize atmospheric look-up tables, and present the ALG toolbox to the hyperspectral community.

HARMONIZATION OF ATMOSPHERIC LUT

INTRODUCTION

HARMONIZATION OF ATMOSPHERIC LOOK-UP TABLES USING THE ALG TOOLBOX

GENERAL IDEAS FOR HARMONIZATION

Look-up table files format

Avoid ad-hoc solutions through standarization of data format (e.g. netcdf) and interfaces. Facilitates:

- algortihm updates and evolutions;
- documentation of data processing chain and reuse;
- comparison between algortihms.

3

1

Automate LUT generation

RTMs are complex tools and each new development implies specific, but similar, scripts. Reusing existing tools will ease work-load to focus on scientific algorithmic core developments.

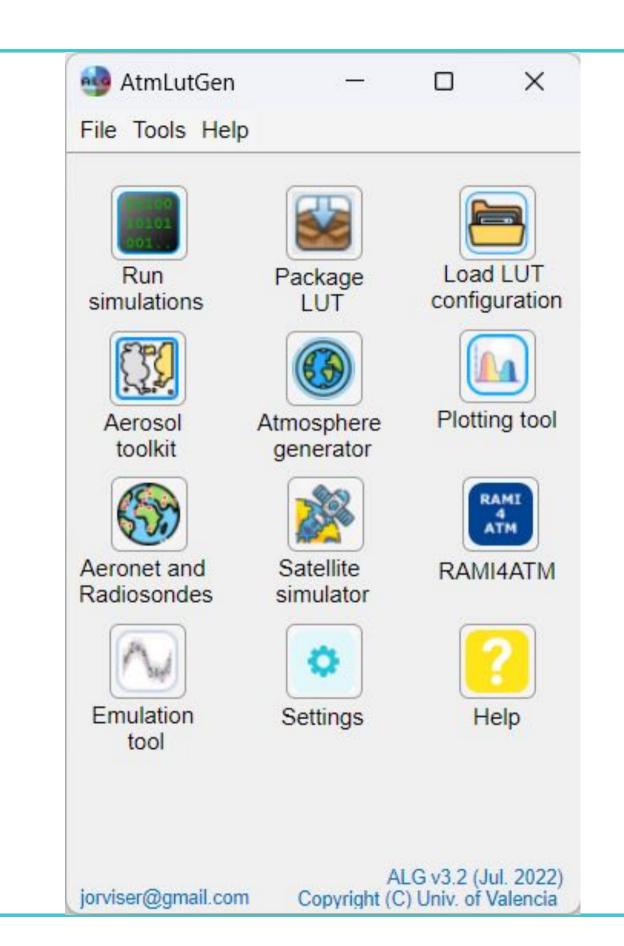
2

definition input of

Consistent variables (e.g. aerosol properties, angles, units...) and spectral outputs (transmittances & reflectances). Facilitates understanding of various algortihms and their comparison.

4

Although standardized, LUT design can still be flexible (input variables, grid points, spectral configuration) to cover specific needs from mission and algortihms.


Input & output definition

Keep flexible design

WHAT IS ALG?

ATMOSPHERIC LOOK-UP TABLE GENERATOR (ALG)

ALG is a software tool that facilitates generating large databases for a variety of atmospheric Radiative Transfer Models (RTM). ALG allows consistent and intuitive user interaction to enable configuration and execution of model simulations, storing RTM data for any spectral configuration in the optical domain.

eneral conf.	Input variables	Spectral conf		Surface	Advanced conf.		
Group 🛜	Parameters		S	elect all			
Atmospheric Aerosols		Ground altitude [km] Sensor altitude [km] Solar zenith angle [deg] Visual zenith angle [deg]		ID	Description	Values	*
Geometric				O3STR	O3 column concentration [atm-cm]	0.25,0.45	
Add all	CANNOL RETURN CONTRACTOR			H2OSTR	H2O column concentration	0.5,0.84,1.41,2.34,4	
	Kelauve azimuti angle [d			VIS	Aerosol optical thickness (at 550 nm)	0.03,0.12,0.22,0.33,0.46	
				G	Henyey-Greenstein asymmetry factor	0.6,0.73,0.86,0.99	
20				ASTMX	Angstrom coefficient	0.2,0.8,1.4,2	
Distribution:	istribution:			SSA	Single Scattering Albedo	0.7,0.99	
Min Ma	ax	Samples		OBSZEN	Visual zenith angle [deg]	0,15	-
0 7	0	8	4			×	
Linear	T	Preview	Add	d param.	Set correlations	Remove parar	m
Center							
Parameters ()							

Same interface for all RTM · Consistent inputs & outputs definition · Flexible spectral configuration · Automatize RTM execution, processing and LUT formatting

STANDARD FORMAT

Hierarchical data files (hdf5) containing consistent information (wavelengths, transmittances/reflectances, irradiance, input variables, units...) Tools (Matlab, Python) are provided for easy integration in data processing code

HDF5 emuTrain.h5 Group '/' Attributes:

Dataset 'IO'

Size: 1066x1

MaxSize: 1066x1

LUT CONFIGURATION

```
>> h5disp('../LUTs folder/emuTrain.h5')
```

```
'RTMname': 'MODTRAN6'
'opmode': 'Transfer Functions'
'inputmode': 'Latin hypercube'
'sensor': ''
'lut package date': '10-May-2022'
'outnames': 'Lp0, Edir0, Edif0, S, tdir, tdif'
```

COMPATIBLE ATMOSPHERIC RTM

MODTRAN

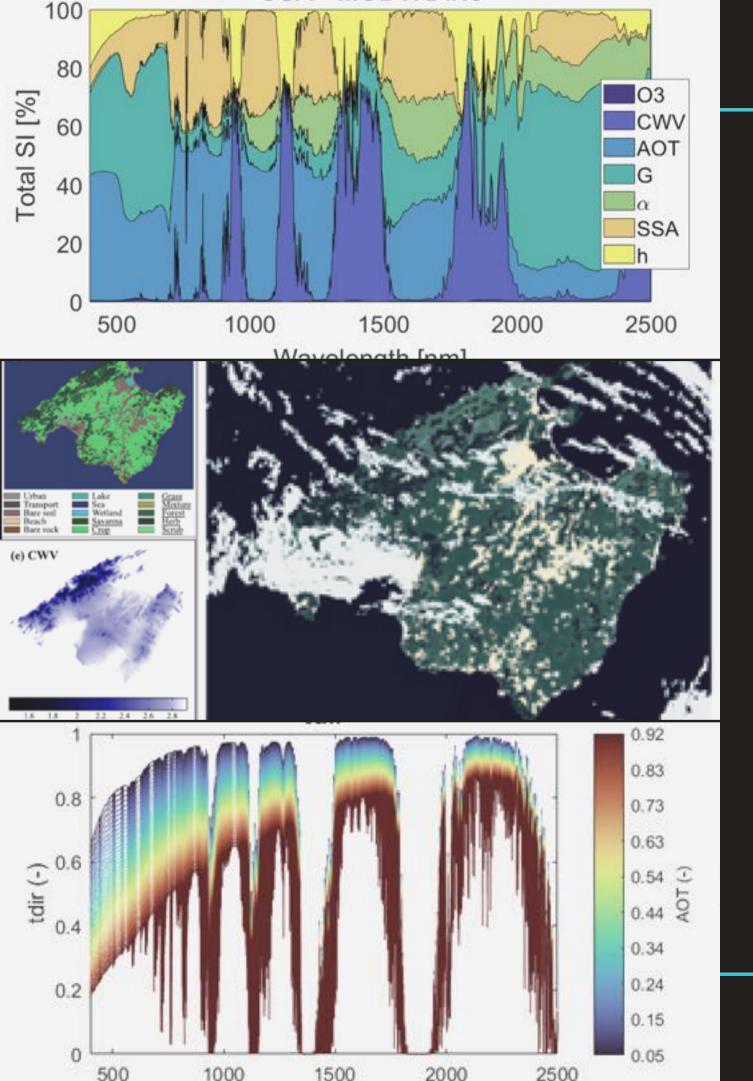
www.modtran.spectral.com Based on the DISORT solver and a modelization of gas absorptions by the kcorrelation method. Spectral range and resolution: UV to TIR at 0.1 cm-1

6SV

salsa.umd.edu/6spage.html

Based on the SOS solver with polarization and decoupled scattering and absorption. Spectral range and resolution: VIS to SWIR at 2.5 nm

libRadtran


http://libradtran.org Collection of functions and programs for calculation of solar and thermal radiation in the Earth's atmosphere. IibRadtran is freely available under the GNU General Public License.

Others

ARTDECO (LOA) SBDART(Univ. California)

and more in the pipeline... PYDOME (DLR) SCIATRAN (IUP Bremen) SMART-G (HYGEOS)

•••

A few use cases

MORE THAN 6 YEARS USING ALG

- Sensitivity analysis and LUT design
- GSOOS project)

• Comparison of atmospheric RTMs (RAMI4ATM) • Synthetic scene generation (ESA's FLEX E2E simulator, ESA

• Atmospheric correction (FLEX Level-2, ACIX-III) • Training datasets for designing and testing emulators

WANNA **KNOW MORE?**

Software

- www.artmotoolbox.com (download)
- v=8WRrrAXbVQU
- Results to be published as part of RAMI4ATM

Contact us

- ARTMO toolbox: artmo.toolbox@gmail.com

References

J. Vicent et al.: Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0), Geosci. Model Dev., 13, 1945-1957, https://doi.org/10.5194/gmd-13-1945-2020, 2020.

• SENSECO COST Action tutorial: www.youtube.com/watch?

• Dr. Jorge Vicent Servera: jorge.vicent-servera@magellium.fr