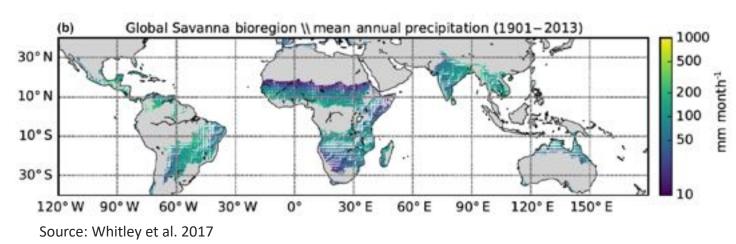


European Space Agency

2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy 19–21 October 2022 | La Collinetta Eventi, Frascati IT

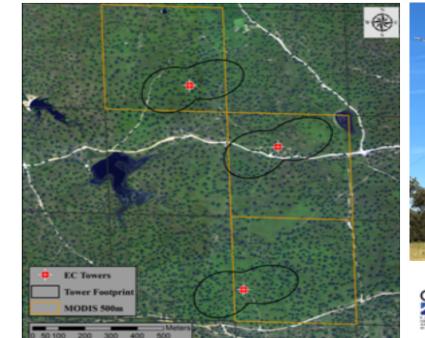
Monitoring Key Ecosystem Properties with Hyperspectral Remote Sensing in a Complex Tree-Grass Ecosystem

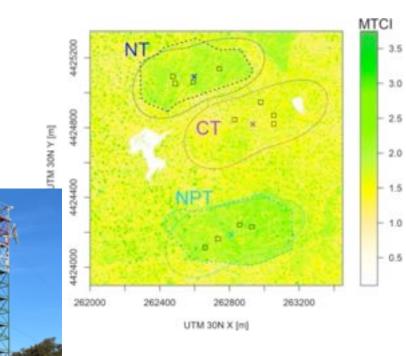

Vicente Burchard-Levine^{*}, M. Pilar Martín, Héctor Nieto, Javier Pacheco-Labrador, Rosario González-Cascon, Gerardo Moreno, Victor Rolo, Mirco Migliavacca, Tarek El-Madany, Sung-Ching Lee and Arnaud Carrara

Frascati, Italy 20-Oct-2022

Tree-Grass Ecosystems (TGEs)

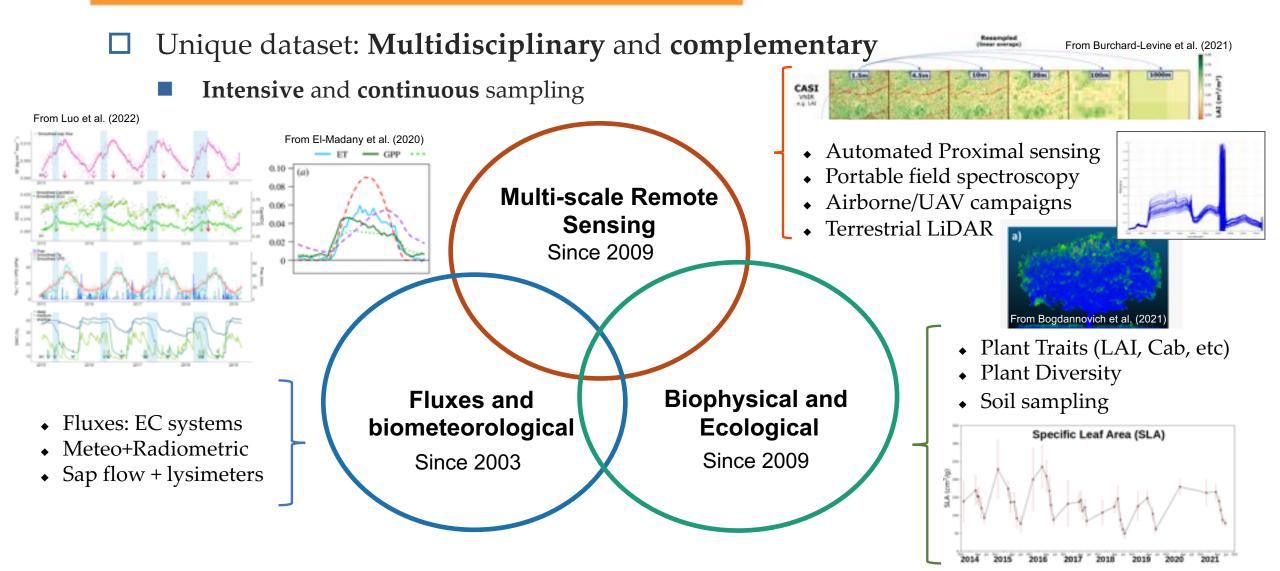
- ~16-35% of global land-surface
- High socio-economic and ecological value
 - Agro-pastural systems
 - Dominant role in **global biogeochemical cycles**
- TGEs sensitive to **climate change**
- EO models poorly constrained
 - e.g. misclassified in global LULC maps, large bias in ET products
- Heterogeneity in space and time





Majadas de Tiétar Research Station

- □ Located in **Extremadura**, **Spain**
- **EC flux tower** set-up in **2003** (CEAM)
 - In 2014, **+2 ecosytem towers + 3 sub-canopy** (MPI-BGC)
 - □ MANIP: Large-scale nutrient manipulation experiment



CSIC

Data and Research Areas

In-Situ Flux Observations

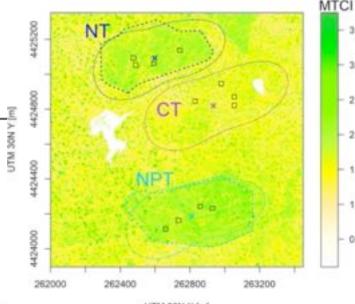
Three Eddy-Covariance (EC)+ meteo systems

- Both overstory (15m, ecosystem) and understory (1.6m, grass-soil)
 - LE, H, G, CO₂, Vertical wind/temperature/humidity profile
- **Radiation components** (SW/LW in/out)
 - Ecosystem, Tree canopy, grass-soil
- **Soil**: moisture, temperature, hydraulic properties.
- Tree transpiration
 - Sap flow+dendometers 6 trees per tower
- **Three Lysimeters**: Grass-soil ET

Agricultural and Forest Meteorology Adventer 224, 15 Revil 2017, Pages 87-PP

Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem

a 7.8.49, Tarek E. El, Markey J. Mirror Miglianamy J. Roberg E. R.


Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem

photopic and Print Measuring 262 (2018) 278-274

control from production of 10 terms

Agricultural and Forest Meteorology

Tarek S. El-Madary"", Markin Reichstein", Oscar Perez-Priego", Arnord Carriera", Gerando Morene", M. Pilar Martin", Javier Pachero-Labrador", Georg Wohlishtt', Hector Nieto', Ulrich Wober", Olaf Kolle", Yan-Pong Lan", None Carvalhain^{4,0}, Mirco Migliavacca"

3.5

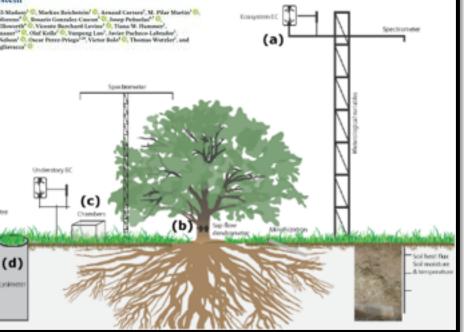
3.0

2.5

2.0

1.5

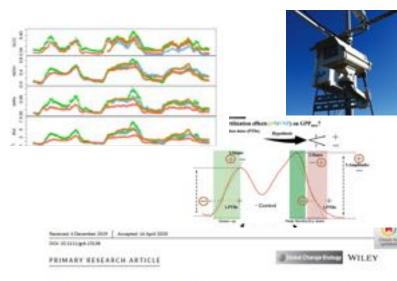
1.0


0.5

JGR Biogeosciences

RESEARCH ARTICLE. How Nitrogen and Phosphorus Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem

Davek S. 12-Maslam," C., Markov Brichstein" C. Arnaud Cartury", M. Pilar Martin " lavardo Morena⁴ (), Bosario Gonzalez Coscor⁶ (), Josep Petuelas⁴ intid 5. Elloworth" (2, Vicente Banchard Levine" (2, Tiana W. Hammer legen Kanner¹⁴ , Olaf Kolla⁴ , Vanpeng Lau³, Javier Pacheco-Labrad son¹ O. Oscar Peters-Pringi


PI/Contact:

- Arnaud Carrara (CEAM) - Sung-Ching Lee (MPI-BGC) - Tarek El-Madany (MPI-BGC)

Automated Proximal Sensing

- **Phenocams** (each tower)
 - Blue, Green, Red, and NIR
- NDVI/PRI sensors (each tower)
- Apogee TIR sensors (each tower)
 - 0°, 35°, 55° view angle

Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem

 Yuspeng Luo³
 | Tarek El-Madany¹ | Xuanforg Ma^{3,3} | Richard Nai² | Martin Jung³ |

 Ulrich Weber³
 | Glantuca Filippa³
 | Solveig F. Bucher^{4,3}
 | Gerando Moreno⁶ |

 Edoardo Cremonese³
 | Amaud Carrara² | Rosario Gonzalez-Cascon⁶ |
 |

 Yonatan Cáceres Escudero⁹
 | Martia Galvagno³ | Juvier Pacheco-Labrador³ |

 M. Pitar Martin¹⁰ | Oscar Perez-Priego¹¹ | Martias Reichstein¹⁵ | Andrew D. Richardson^{10,13} |

 Annette Menzel¹⁴ | Christine Römermann^{24,5} | Mirco Migliavacca¹

• FLuorescene bOX (FLOX)

- High-res: SIF retrievals O₂ A and B bands
- VNIR (400-950nm)
- Sampling grass and tree crown alternatively (time step=5min)

AMSPEC-MED (2years, not operational now)

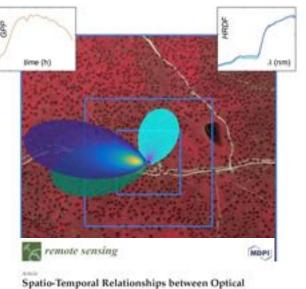
Multi-angular hyperspectral sampling (Unispec DC)

Heatwave breaks down the linearity between sun-induced fluorescence and gross primary production

David Martini[®] (C. Karolina Sakowska² (C. Georg Wohlfahrs¹ (C. Javier Pacheco-Labrador¹ (C. Christiaan van der Tol[®] (C. Albert Parcar Castell[®] (C. Troy S. Magney[®] (C. Arnaud Carnass² (C. Roberto Colombo[®] Tarek S. El-Madany¹ (C. Rosario Gonzalez-Cascon[®] (C. Maria Pilar Martin^{1®} (C. Tommaso Julitra¹¹, Gerardo Moreno¹² (C. Uwe Rascher¹⁰ (C. Markus Reichumin⁸ (C. Micol Rosarin⁸ (C. and Mirco Migliavacca^{1,10} (C. Sarolina Sakowska^{1,10} (C. Sakowska^{1,10} (C. Sakowsk^{1,10} (C. Sakowsk^{1,10}

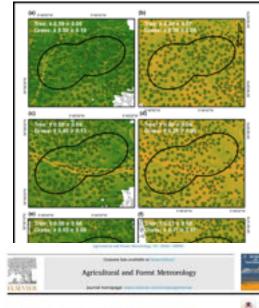

PI/Contact:

- J. Pacheco-Labrador (MPI-BGC)
- Sung-Ching Lee (MPI-BGC)



SIF tot (will m" nm" sr")

Airborne/UAV Acquisitions



- UAV campaigns (2020-2021)
 - DAAD/MONSOON/U. Augsburg:
 - May 2021: Micasense Altum (VNIR+TIR)
 - >30 overpasses between 5-20 May
 - Diverspec/Speclab-CSIC/UEX
 - May 2022: Sequoia (VNIR)

Information and Carbon Fluxes in a Mediterranean

Javier Pachever Labrador 14, Tavis S. El Malany 7, M. Filar Martin 7, Mirco Miglianava 7,

UAS-based high resolution mapping of evapotrampiration in a Medinemannan tree-grass ecosystem

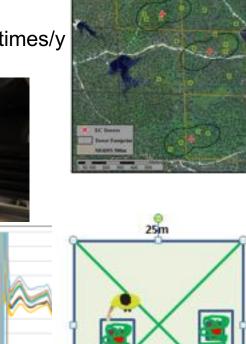
Jake E. Simpson ', Benney H. Holman ', Herne Sizer, ', Tarek S. H. Madaey ' Mirrs Miglavarte", M. Nar Morio, Vicene Burchard Levine, Arnaul Canara" Soluting Rischer', Print Firster', Jul D. Kaplan'

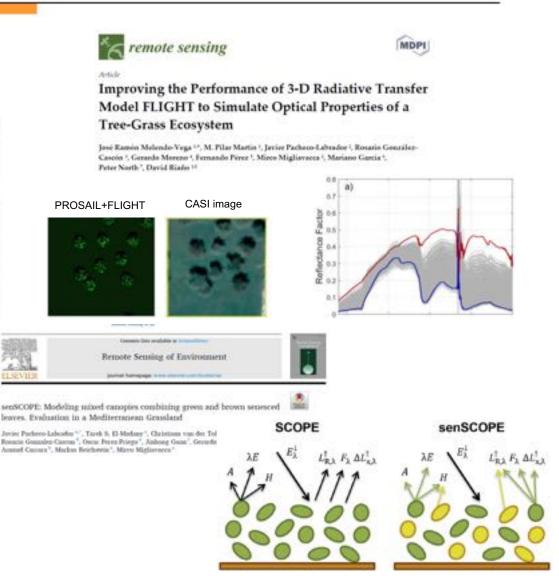
PI/Contact:

- M.Pilar Martín (Speclab-CSIC)

In-Situ Spectroscopy

ASD Spectral measurements since 2009


- Simultaneous to biophysical sampling in 25mx25m plots
- Ad hoc adquisition protocols
- Grass canopy: 5-6 times/y
 - 10-40 samples/campaign
- Tree leaf-level (plant-probe): 2-3 times/y


8111111

0P1 - 0P1 - 0P1 - 0P1 - 0P14 - 0P14 -

• 5-15 trees/campaign

293 - 295 - 294 - 297 - 295

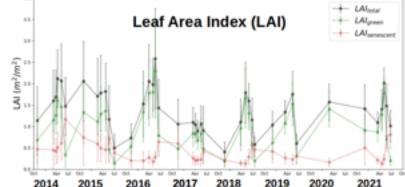
PI/Contact:

- M.Pilar Martín (Speclab-CSIC)

In-Situ Plant Traits

Long-term biophysical, chemical and spectral dataset of trees and grasses (2009-2022)

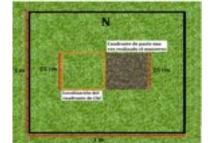
Tree leaf-level data


Biophysical

- **Structural** (LA, SLA)
- □ Water content (FMC, EWT, LWC)
- □ **Pigments and nutrients** (Chl a+b, cartenoids, N, C)

Tree canopy data

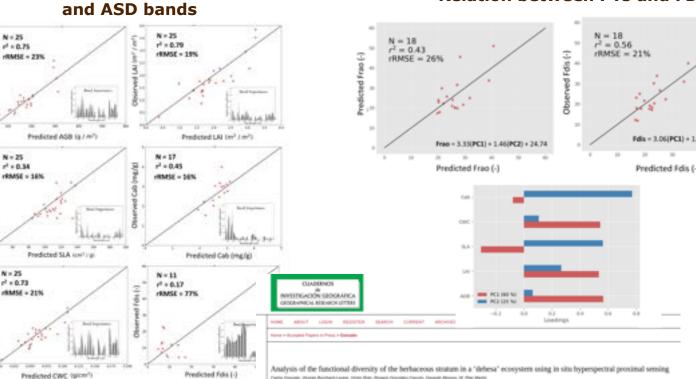
LAI (using LAI-2200C)



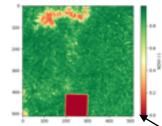
Grass canopy data

Biophysical (green and non-green)

- Structural (LAI, SLA, SLW, ABG)
- Water content (FMC, EWT, LWC, CWC)
- **Pigments and nutrients** (Chl a+b, cartenoids, N, C)



Plant Diversity and gas exchange


- Since 2019, joint **Speclab-UXE** campaigns to sample **functional diversity** + **gas exchange**
 - Relating grassland spectral diversity/traits with functional diversity (Fdis, RaoQ)
 - Portable hyperspectral camera (**Specim-IQ**) for within-plot spectral variability
 - Now processing data from 2022 campaign

Hyperspectral Models using PLSR

Relation between PTs and FD

Specim-IQ

PI/Contact:

- M.Pilar Martín (Speclab-CSIC)
- Gerardo Moreno (UEX)
- Victor Rolo (UXE)

Key ongoing (hyperspectral) work

- Upscaling functional diversity models from proximal sensing to space-borne data
 - Acquisitions of **PRISMA** images (2020-2022) over Majadas
 - Daily acquisitions of Venus sensor (4m, CNES) since March 2022 (PI: J. Pacheco-Labrador)
- Using hyperspectral data to quantify non-photosynthetic vegetation
 - Important in semi-arid grasslands
 - Affects plant trait retrievals (especially in mixed phenological periods). Not well represented in RTMs
 - Burchard-Levine et al. (2022) suggested important influence for heat and water fluxes
- Better characterize 'background' dry grass in 3D RTM modeling (using DART)
- Quantifying spectral influence of tree cover over mixed pixels and effect on plant trait retrievals from medium resolution sensors (Sentinel-2,3, PRISMA, DESIS, Venus)

Conclusions

- Ideal CAL/VAL site as a well-instrumented and characterized long-term monitored ecosystem
 - Complex landscapes but globally very relevant
 - Scientific gap to better represent these heterogeneous systems

Long-term simultaneous datasets over permanent plots (>13 years)

- Multi-scale spectral data: leaf, canopy, UAV, Airborne, spaceborne
- Both intensive periodic campaigns and continuous sampling
- Coupled spectral and plant trait sampling strategy

Multidisciplinary research teams

- Important complimentary data and expertise (Micrometeoreology, eco-hydrology, ecology, etc)
- Datasets available for scientific collaborations

Thanks!

Vicente Burchard-Levine Email: vburchard@ica.csic.es

Vicente Burchard-Levine^{*}, M. Pilar Martín, Héctor Nieto, Javier Pacheco-Labrador, Rosario González-Cascon, Gerardo Moreno, Victor Rolo, Mirco Migliavacca, Tarek El-Madany, Sung-Ching Lee and Arnaud Carrara