

High-level algorithm and product harmonization for upcoming global imaging spectroscopy missions

Phil Townsend, University of Wisconsin / Caltech Jet Propulsion Laboratory

Contributors:

People with whom I have discussed this topic in the past several years!

- Kerry Cawse-Nicholson (JPL)
- Michelle Gierach (JPL)
- Adam Chlus (JPL)
- Phil Brodrick (JPL)
- David Thompson (JPL)
- Rob Green (JPL)
- Chip Miller (JPL)
- Ben Poulter (NASA GSFC)

- Marco Celesti (ESA)
- Jens Nieke (ESA)
- Jenny Adams (U. Zurich, previously ESA)
- Michael Schaepman (U. Zurich)
- Mike Rast
- Dave Schimel (JPL)
- Fabian Schneider (JPL)

CHIME High Priority Prototype Products

DOMAIN	THEMATIC AREA		VARIABLES CHPPP	CHIME Candidate Algorithms
AGRICULTURE / FOOD SECURITY		Assessment of biophysical and biochemical variables related to the crops and of agronomic interest	Leaf/Canopy Pigment Content	Semi-empirical modelling based on narrow-band vegetation indices; Hybrid methods based on ANN/LUT or other machine learning algorithms applied to vegetation canopy radiative transfer models outputs (e.g. PROSAIL).
			Leaf/Canopy Nitrogen Content	Narrow-band vegetation indices; Hybrid methods based on ANN/LUT or other machine learning algorithms e.g. GPR methods applied to vegetation canopy reflectance models (e.g. PROSAIL).
			LAI	
			Canopy Water Content	
			Leaf/Canopy Pigment Content	
			Leaf Mass/Area	
	-	Topsoil properties	Soil organic carbon content	Chemometrics modelling (e.g. PLSR); Spectral analysis; Spectral indices; Machine learning (e.g. Random Forest)
			Soil texture (clay, silt, sand)	
GEOLOGY & MINERALS		Raw material detection	Mineral identification / classification (Kaolinite, Smectite, Jarrosite, Dolomite)	Sub-pixel linear unmixing
			Hematite – Goethite distribution	
			Ferric oxide content	
			Kaolin Cristallinity	

SBG Key Product Suites

SBG Algorithm Class	SBG Algorithm Products (examples)	
CORE Algorithms		
Earth Surface Temperature and Emissivity	Land Surface Temperature* and Emissivity	
VSWIR Reflectance	Land and Water Reflectances, BRDF Corrections, Albedo	
Cover Classifications	Cloud, Water, Land Cover, Plant Functional Types, etc.	
PRODUCT Algorithms		
Terrestrial Ecosystems		
Vegetation Traits	Nitrogen, LMA, Chlorophyll, Canopy water	
Evapotranspiration	ET*, Evaporative stress index	
Proportional Cover	GV, NPV, Substrate, Snow/Ice, Burned Area	
Geology/Earth Surface		
Substrate Composition	Mineral type*, Fractional abundance*, Soil types and constituents	
Volcanic Gases and Plumes	SO2, Volcanic ash	
High Temperature Features	Volcanic temperature anomalies (lava temperature), Forest fires	
Aquatic and Coastal Ecosystems		
Water Biogeochemistry	Pigments, CDOM, Suspended particulate matter	
Water Biophysics	Diffuse light attenuation, Inherent optical properties, Euphotic depth, PAR	
Aquatic Classification	Phytoplankton functional types, Floating vegetation, Benthic cover, Wetlands	
Snow and Ice		
Snow albedo	Albedo, Grain size, SSA, Light absorbing particles, Fractional cover	

Additional Products

- Wildfires
- Greenhouse gases
- Biodiversity (α , β)
- Vegetation species composition

*Leverages ECOSTRESS and EMIT algorithms = already "Global" \rightarrow many (or most) of the remaining products do not have algorithms that have been validated or are mature for global application.

Crosswalk-Vegetation

CHIME

- Core Products
 - Surface Reflectance

SBG

- Core Products
- Surface Reflectance
 - Land Cover
 - Plant functional Types (PFTs)

- - (Leaf) Canopy Nitrogen Content Foliar Nitrogen
 - (Leaf) Canopy Pigment Content -->
 Chlorophyll
 - Leaf Area Index
 - Canopy Water Content
 - Leaf Mass per Area (LMA, SLA)

- Vegetation → Focus Agriculture
 Vegetation → Focus Natural Vegetation
 - - Canopy Water Content
 - Leaf Mass per Area (LMA, SLA)
 - Fractional Cover (GV, NPV)
 - Substrate, Soils, Water, Snow, Ice
 - **Biodiversity Metrics**

Crosswalk-Soils and Geology

CHIME

- Soils → Focus agriculture
 - Soil Organic Carbon
 - Soils Texture
 - Sand, Silt, Clay (mixes) •

- SBG
 - Soils
 - Soil Types and Constituents
 - Soil Texture (sand, silt, clay)

- Geology
 - Mineral Identification / Classification
 - Hematite / Goethite Distribution
 - Ferric Oxide Content
 - Kaolin Crystallinity

*Snow, Methane and Aquatic/Coastal Biochemistry/Physics/Classification likely have similar crosswalks but are not explicitly listed as CHPPPs.

- Geology
 - Mineral Type
 - Mineral Type Fractional Abundance

PRODUCT	MATURITY	GREATEST NEED
Snow products	High	In situ data in glaciers and below-canopy snow
Evapotranspiration	High	Data fusion and improved latency
High Temp Features	High	High spatial resolution (<5 m) thermal data over lava
Substrate Composition	High (minerals)	VSWIR [mature] / TIR [low] fusion
Proportional Cover	Medium	Complimentary combination of algorithms from different fields
/olcanic Gas&Plumes	Medium	Improvements in computational efficiency
Nater Biogeochem	Medium	Analysis of applicability and compatibility of PACE algorithms for coastal and inland waters, at SBG GSD
legetation Traits	Low	Global in situ and remote sensing data
Substrate Composition	Low (soils)	Global in situ and remote sensing data
Nater Biogeophysics	Low	In situ water column data
Aquatic Classification	Low	Global datasets; build upon biogeochem & biogeophysics products to produce applications-ready data

Assessment of Maturity (exploratory products)

PRODUCT	MATURITY	SUMMARY
Wildfires	High	In-situ/validation data
Glint	Medium	Sky-glint vs. sun-glint, need aerosol optical thickness, cannot be entirely removed through tilt, leverage PACE, spatial resolution considerations, validation needed
Greenhouse gases	Medium	In-situ/validation data, significant dependency on instrument characteristics
Biodiversity	Low	Global field and airborne data, consistent data acquisition standards, seasonal spectral libraries, leaf-to-canopy scaling, angular dependence
Plant species	Low	Community composition, or "oak-ness" more achievable. Traceability between other products and species composition, uncertainty quantification

- Current algorithms will likely be superseded for most if not all products
- Machine learning (ML) algorithms will likely be employed for many algorithms to generate products rapidly at global scale
 - ML to emulate physically-based and even data-driven approaches
- How to harmonize?
 - Harmonize the input data use common models [resample the data: spectroscopy purist's nightmare]
 - Harmonize (tune) the models to differences in input data [resample the model: multiple flavors of algorithms, *goal: sensor-agnostic models*]
 - Retain spectroscopic [reflectance] data at all levels, resample at end
 - Harmonize the products post-hoc [LSH approach]
 - Raises many questions (base data, nonlinearities, etc.)

- We need to be user-aware
- With CHIME, SBG and other missions having global coverage, it is likely that our user base will increase by >1 order of magnitude
- Average users will not be imaging spectroscopy specialists, many will be naïve users
- They will want to download comparable products from each mission and many will assume the data are equivalent (or want it to be)
- And there will be many users who will want to merge surface reflectance data from CHIME and SBG (or other sensors)
 - This will require spectral resampling
 - Decisions we make as a community now can ensure best practices by future users → avoid worst case scenarios

Data Levels

L4: CESM, GISS Model Runs

This is where harmonized data reside.

Graphic courtesy of David Thompson (EMIT example)

<u>11</u>

SISTER VSWIR Prototyping Workflow

Final Thoughts

- Effective harmonization:
 - Modular transparent, open-source algorithm development
 - Objective: sensor-agnostic algorithms
 - Emphasize intercomparison activities in lead-up to ATBDs
 - Maximum use of common inputs:
 - If not possible: have the workflows be adaptable so that common data sets can be tested across platforms
 - Common cal/val/training/ancillary data
 - Common processing workflows
- Consider on-demand processing approaches when these diverge
- Remember the user needs
 - Many users may trust what's "under the hood"