

UNIVERSIDAD DE LAS INLAAS DE GRAN CANARIA. Institucio Universituario de Microelectrónica Aplicado

CHIME

Copernicus Hyperspectral Imaging Mission for the Environment

CHIME Onboard Processing: Cloud detection and selective compression

Camarero, Roberto¹; Vitulli, Raffaele¹; Di Cosimo, Gianluigi¹; Nieke, Jens¹; Celesti, Marco¹; Ghasemi, Nafiseh¹; Lebedeff, Dimitri²; Foulon, Michel-François²; Bobichon, Yves²; Nguyen, Hieu Hugo²; Thomas, Delphine²; Grynagier, Adrien²; Berrojo, Luis³; Rodriguez, Pedro³; Veljkovic, Filip³; Sarmiento, Roberto⁴; Barrios, Yubal⁴; Sanchez, Antonio⁴

Organisations: 1: ESA, The Netherlands; 2: Thales Alenia Space, France; 3: Thales Alenia Space, Spain; 4: University of Las Palmas de Gran Canaria, Spain

CHIME mission

Continuous acquisition of all emerged and coastal areas

- More than 200 bands Spectral range 400-2500nm
- High spectral resolution 10nm
- High spatial resolution 30m
- Wide swath 130km
- Tremendous data volumes (>100 Tbits/day raw)
- Very high throughput (>4Gbps).

THE EUROPEAN SPACE AGENCY

Context and rationale

CHIME constraints on data reduction:
High data acquisition volumes and rates.
High radiometric requirements.
Limited HW resources.
Limited transmission capacity.
Costly space-to-ground data delivery.
Standard solutions preferred.

Opportunities:

Latest CCSDS standard aiming at hyperspectral image compression (CCSDS 123.0-B-2)
Precise knowledge of imaging system: near-lossless compression possible.
Cloud pixels "unsuitable" for mission needs.
Cloud cover > 54% Earth land surface (68% of the oceans).
Selective compression to improve efficiency (not standardized).

CCSDS 123.0-B-2 compression standard

A low-complexity highly flexible standard for lossless and near-lossless hyperspectral data compression.

Based on previous lossless standard using an adaptive linear predictor based on the values of nearby samples in a small three-dimensional neighbourhood.

Loss is controlled for each band and guaranteed for each pixel (absolute error limit).

For CHIME, the quantizer step size is kept for each band below the **noise floor** (NEDL @ Lmin) or **lossless**, to satisfy all **radiometric requirements**.

Selective compression not natively supported

 THE EUROPEAN SPACE AGENCY 28/09/2022

Onboard cloud detection

Objective: To define a simple cloud detection algorithm for further onboard data reduction

Top of Atmosphere Reflectance is needed for the 2 approaches in order to be free of solar illumination

On-board conversion limited to the bands used for cloud detection

Physical approach (also called Threshold approach)

- Discriminate clouds from ground features in the scene
- Threshold tests to image spectral properties based on a few useful bands and on specific indexes (i.e. band combinations) to help high reflective rejection (vegetation, sand, snow)
- Classical approach used for (on-ground) cloud classification (Landsat, Sentinel-2, EO-1 Hyperion ...)

Support Vector Machine approach

- Separate pixels in 2 classes in N-dimension space
- Learning stage with cloud data base to find the optimal hyperplane between the 2 classes
- Already used for on-ground cloud classification on multispectral sensors (French and Thales Alenia Space export program)
- N limited to useful bands and indexes from threshold approach
- Learning stage on-ground

Onboard cloud detection

Results on 42 reference cloud data base images

SVM approach

200

Threshold approach

GLOBALLY GOOD DETECTION BUT WITH SOME CRITICAL CASES (FALSE POSITIVE^{*}>10%)

2 CASES WITH THRESHOLD APPROACH

- Old/melted/Snow
- Salt area

1 CASE WITH SVM APPROACH

Desert area (similar samples not included in training set)

Quantitative results

False Positive (%)	Threshold	SVM
Mean	0.93	0.60
Standard deviation	2.76	1.73

LC82290562014157LGN00_4_ata 8f

600

200

400

600

200

cloud detection

FP: 12.5 %

FP: 0.0 %

cloud detection

ThalesAlenía

200

photo+cloud-detectio

→ SVM APPROACH SELECTED

photo+cloud-detection

Data reduction strategy

ThalesAlenía Space

On-board

Cloud map

Entropy Coder

Encoder

 $\delta_t(t)$

Compression **CCSDS** evolution

Several options considered

Method	Pros	Cons	Hyperspectral
Deletion of cloud contaminated samples	Low complexity High data reduction Compliant with standard	Loss of (potentially useful) data Lack of flexibility*	Pixel Cloud Detection Cloud mask determination
Selective compression Removal of prediction residuals on clouds (<i>RtZ</i> <i>"Residual to Zero" method</i>)	Low-Medium complexity High compression efficiency Standard decompressor	Lack of quality control on clouds Lack of flexibility*	DAE RTZ $s_x(t)$ \downarrow \downarrow $\Delta_x(t)$ Quantizer $q_x(t)$ Mapper
Selective compression Two-class quantizer (<i>DAE</i> <i>"Different Absolute Error"</i> <i>method</i>)	Very high flexibility* Competitive compression efficiency	Slightly higher complexity Not compliant with standard	$\vec{s}_{x}(t)$ Prediction $\vec{s}_{x}''(t)$ Representative
			Predictor

*Image quality needed on clouds still unclear (straylight correction)

Figure 2-1: Compressor Schematic

compressed

image

Selective compression efficiency

Cloud compression: Data rate lossless & near-lossless mode - all bands

Clear pixels = Lossless mode

Clear pixels = Near-lossless mode

Cloud compression data rate wrt near-lossless -No band exception

Selective compression efficiency

Cloud compression: Data rate reduction / all bands

Clear pixels = Near-lossless mode Cloud compression data rate reduction wrt Near-lossless -No band exception

Cloud compression performance scales almost linearly with cloud coverage

 \rightarrow depends also on cloud distribution (lower efficiency on scattered clouds)

 $Cloud \ compression \ data \ rate \ reduction \ (\%) = \ 100 \times \frac{DataRate_{Standard_Compression} - DataRate_{Cloud_Compression}}{DataRate_{Standard_Compression}}$

+ THE EUROPEAN SPACE AGENC

Conclusion

ThalesAlenia Cesa

Improved data reduction for an overall mission cost reduction

Latest CCSDS standard provides an excellent flexible solution for CHIME Near-lossless compression satisfying all requirements thanks to precise knowledge of imaging system (NEDL).

 \rightarrow Significant compression efficiency improvement

CR<3 (lossless) vs. CR>4 (TBC - near-lossless).

Cloud detection and selective compression to provide enhanced data reduction

Data reduction depends on cloud cover and cloud distribution

(between 20 and 35% for images with around 40% of clouds)

Selected method provides highly flexible low complexity solution with limited risk

(can comply with any image quality requirement both on ground and on cloudy pixels).

