Robert Milewski^{1*} Sabine Chabrillat^{1,2} Nikolaos Tziolas³ Thomas Schmid⁴ Bas van Wesemael⁵ Stéphane Jacquemoud⁶

- 1 German Research Centre for Geosciences (GFZ)
- 2 Institute of Soil Science, Leibniz University Hannover
- 3 Laboratory of Remote Sensing, Spectroscopy, and GIS, Aristotle University of Thessaloniki
- 4 Centro de Investigaciones Energéticas Medio Ambientales y Tecnológicas (CIEMAT)
- 5 Earth and Life Institute, Université Catholique de Louvain
- 6 Institut de physique du globe de Paris, Université de Paris, CNRS

Current Developments in Imaging Spectroscopy for Soil Property Mapping and Land Degradation

2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy 19-21 October 2022 | La Collinetta Eventi, Frascati IT

*milewski@gfz-potsdam.de

EnM/

l Leibniz 2 Universität 4 Hannover

ESA Worldsoils – Soil Surface Conditions at the EO scale

- Increasing availability of large Soil Spectral Libraries (SSL)
- > Basis for accurate estimation of soil parameters
- Challenge: Surface conditions at the EO scale

(1) Young emerging crops (3) Mixed tree/crops (4) Surface roughness

eibniz

OSSL

 Aim: Simulation of "landscape-like" reflectance spectra (Spatially Upscaled Soil Spectral Libraries: SUSSL) → Improve data basis for spectral soil modelling

Simulation of Spectral "Disturbance Effects"

• Simulated aggregated and mixed pixels: Step-wise green crop, surface residues, trees, soil moisture and roughness are added to 158 LUCAS bare soil spectra

Disturbance effect	Mixing steps	Modelling principle										
(1) Early green crops	10, 20, 30	 Virtual 3D soil / plant landscape scenario Manta Carla ray tracing toobpique 										
(2) Crop dry residues	10, 20, 30	 HySimCaR, Kuester et al., 2014, 2021 										
(3) Forest/Trees	10, 20, 30	 Linear mixing with tree spectrum ECOSTRESS speclib (<i>pinus ponderosa</i>) 										
(4) Soil Roughness (microtopography)	10, 20, 30	 Simulation of "shaded soil" MODTRAN diffuse sky irradiance 										
(5) Soil moisture	very low, low, medium	 Physically based simulation of soil moisture MARMIT 2.0 model Bablet et al., 2018; Dupiau et al., 2022 										

Helmholtz Centre Potsdam

Assessment of the impact on SOC prediction performance

□ CNN model applied to all LUCAS agricultural soils (n_val = 2,675, n_cal = 6,242)

Best modelling approach

CHIME | RPD : 1.97 RMSE: 6.67

R² : 0.74

 R²: 0.40

 RPD: 1.29

 Sentinel-2

 RMSE: 10.17

□ (1) CNN model applied 158 LUCAS agricultural soils (bare soil baseline for upscaling experiment)

UCLouvain

Assessment of the impact on SOC prediction performance

□ (2) CNN model applied to the SUSSL (23,858 mixed spectra, 150 disturbance scenarios for each soil)

- Disturbances have strong influence on SOC prediction
- Strong Increase in RMSE

□ (3) CNN model applied to SUSSL after revised thresholding

- Filtering removes most severe effects
- Decrease in RMSE
- But still almost 3% SOC error for S2, 2% for CHIME

ESA Worldsoils – Soil Surface Conditions at the EO scale

- Challenging surface conditions at the EO scale are an essential factor for the decrease in SOC prediction accuracy
- Filtering approaches using spectral indices can only differentiate the most heavily disturbed cases -> residue error still too high
- Multispectral satellites are very limited to detect dry crop residue and moisture
- CHIME is more performant than Sentinel-2

Outlook: Development of "landscape like" spectral library provides test ground for testing of correction methods

- LUT-based inversion for soil parameter estimation (testing adaption of the Soil-Leaf-Canopy, SLC model)
- ML / AI training of disturbed scenarios (hybrid methods)

ibniz

- Camarena long-term research site for soil remote sensing
- Soil surface characteristics, soil erosion stages, and vegetation conditions are strongly related at field plot scale

Degraded field site (SU) Left: under fallow, Right: with barley cultivation

Research objective

 Estimation of the impact of soil degradation on crop productivity (e.g., LAI and grain yield) (Milewski et al., 2022)

Soil profile modification by tillage & rainfall along slopes

Exposure different soil

					Grain yield												
Soil Erosion and Accumulation Stages (SEAS)		Classification Symbol	(A]*`	а	ь	b T	b T	b	b	a	B) ™[a	ь	Г	b	ь Т	с
Accumulation stage (am) : deposits at downslope positions		am1	1.2			İ	t	ł			1		t	t		İ.	I
		am2	30.8		1						and Block	•					İ
Erosion stages (es)	Stage 1 (es1) : slightly eroded soil. Presence of A horizon	es1	0.6								0.4	1					
	Stage 2 (es2) : moderately eroded soil. Loss of A horizon, presence of subsurface	es2a	0.2								0.2						
		es2b	A)	1ma	aniz Soli Ero	es1 sion an	esza d Accur	es20 nulation	es3b n Stages	6530		8)	anz I Erosk	es1 m and A	esza coumu	asion Sta	estio spes
	weathered horizon	es2c				2	000	o	0000	0	401106	4			Ç	9.9	0
	Stage 3 (es3) : strongly eroded	es3a	F	-	4	NE	•		LAI		2	F	-	-		0	
	soil. Loss of A and B horizon. Outcropping of C horizon /	es3b	G	-1900 		T				400,500		D)	1		Ĩ	402800	
	parent material	es3c				P	O O O O O O	om		00	411150	r t	1	-	3		0
				-					CWS			AL-	-			am	11

es3b es3c

Grain yield [t/ha]

es2a

405300

c а

es2a es2c es3b es3c

es1

- Soil surface characteristics, soil erosion stages, land management and vegetation conditions are strongly related
- Estimations of LAI, grain yield & crop water stress (CWSI) are significantly related to the soil degradation status
 - Lowest LAI, yield and water stress at highly eroded soils and sandy accumulation zones
- **Outlook:** Combined remote sensing based monitoring of soil and vegetation resources exploiting upcoming hyperspectral EO datasets (PRISMA, EMIT, EnMAP, CHIME, SBG,...)
- 2021-2022:
 - 28 PRISMA scenes (19 cloud free)
 - 2 EnMAP scenes (commissioning phase)

 VNIR-SWIR reflectance, LWIR emittance

HELMHOLTZ

532 spectral bands

Research objective

> Improvement of soil property (SOC, carbonates) estimation by including LWIR information

- Combined dataset improves CaCO₃ prediction
- Most important spectral regions VIS + NIR + LWIR (9-10 μm)

CaCO₃

0

LAGON

548000

- Only small improvement by including LWIR information
- High SOC content in the alluvial plain and Lignite mine
- Most important spectral regions NIR + SWIR II + LWIR (< 8.5 μm)

SOC [%] 10

\$53300

\$50000

SOC

GFZ Helmholtz Centre Potspam

HELMHOLTZ

\$54000

 Addition of LWIR information significantly improved spectral models and estimation of soil properties (SOC and CaCO₃)

Next steps

- ✤ Analysis of soil texture
- Combination and testing of hyperspectral optical and multispectral thermal EO sensors (e.g. EnMAP, CHIME, SBG, LSTM)
- Demonstration of potential for combining optical and thermal spectral information for global soil mapping and monitoring

2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy 19-21 October 2022 | La Collinetta Eventi, Frascati IT

Thanks for your attention!

Current Developments in Imaging Spectroscopy for Soil Property Mapping and Land Degradation

Robert Milewski*, Sabine Chabrillat, Nikos Tziolas, Thomas Schmid, Bas van Wesemael, Stéphane Jacquemoud

*milewski@gfz-potsdam.de

CC BY-SA 4.0 slide template by Brosinsky et al. (2019)

