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ESA Worldsoils – Soil Surface Conditions at the EO scale

• Increasing availability of large Soil Spectral Libraries (SSL)
➢ Basis for accurate estimation of soil parameters 

• Challenge: Surface conditions at the EO scale

• Aim: Simulation of “landscape-like” reflectance spectra (Spatially Upscaled Soil 
Spectral Libraries: SUSSL) → Improve data basis for spectral soil modelling

(1) Young emerging crops

(2) After harvest residues

(4) Surface roughness(3) Mixed tree/crops (5) Soil moisture



Simulation of Spectral “Disturbance Effects”
• Simulated aggregated and mixed pixels: Step-wise green crop, surface residues, trees, soil 

moisture and roughness are added to 158 LUCAS bare soil spectra

Disturbance effect Mixing 
steps Modelling principle

(1) Early green crops 10, 20, 30 • Virtual 3D soil / plant landscape scenario

• Monte Carlo-ray-tracing technique

• HySimCaR, Kuester et al., 2014, 2021(2) Crop dry residues 10, 20, 30

(3) Forest/Trees 10, 20, 30
• Linear mixing with tree spectrum 

• ECOSTRESS speclib (pinus ponderosa)

(4) Soil Roughness 
(microtopography) 10, 20, 30

• Simulation of “shaded soil” 

• MODTRAN diffuse sky irradiance

(5) Soil moisture
very low, 
low, 
medium

• Physically based simulation of soil moisture

• MARMIT 2.0 model 

• Bablet et al., 2018; Dupiau et al., 2022

(Keshava& Mustard 2002)



Assessment of the impact on SOC prediction performance

• Best modelling approach

CHIME Sentinel-2 

❑ CNN model applied to all LUCAS agricultural soils (n_val = 2,675, n_cal = 6,242)

❑ (1) CNN model applied 158 LUCAS agricultural soils (bare soil baseline for upscaling experiment)

• Biased subsample 
consisting of 
highly variable 
soils

➢ Increase in RMSE

R² : 0.74
RPD : 1.97
RMSE: 6.67

R² : 0.40
RPD : 1.29
RMSE: 10.17



Assessment of the impact on SOC prediction performance

❑ (2) CNN model applied to the SUSSL (23,858 mixed spectra, 150 disturbance scenarios for each soil)

• Filtering removes most 
severe effects

➢Decrease in RMSE
➢But still almost 3% SOC 

error for S2, 2% for 
CHIME

• Disturbances have strong 
influence on SOC 
prediction

➢Strong Increase in RMSE

❑ (3) CNN model applied to SUSSL after revised thresholding



• Challenging surface conditions at the EO scale are an essential factor for the 
decrease in SOC prediction accuracy

• Filtering approaches using spectral indices can only differentiate the most 
heavily disturbed cases -> residue error still too high

• Multispectral satellites are very limited to detect dry crop residue and moisture

• CHIME is more performant than Sentinel-2

Outlook: Development of “landscape like” spectral library provides test ground for 
testing of correction methods

– LUT-based inversion for soil parameter estimation 
(testing adaption of the Soil–Leaf–Canopy, SLC model)

– ML / AI training of disturbed scenarios (hybrid methods)

ESA Worldsoils – Soil Surface Conditions at the EO scale



Impact of soil degradation on crop productivity
• Camarena long-term research site for soil remote sensing
• Soil surface characteristics, soil erosion stages, and 

vegetation conditions are strongly related at field plot scale

Research objective
➢ Estimation of the impact of soil degradation on 

crop productivity (e.g., LAI and grain yield)
(Milewski et al., 2022)

Degraded field site (SU) Left: under fallow, Right: with barley cultivation

Soil profile modification by 
tillage & rainfall along slopes

➢ Exposure different soil 
horizons

Camarena, central Spain



Impact of soil degradation on crop productivity

Impact of soil degradation on crop productivity

AHS (VNIR-SWIR-TIR) 
hyperspectral data

Field sampling

Image
pre-processingLAI measurements

Crop grain yield

Crop Water Stress Index 
(CWSI, Tcanopy & Tair)

Classification of Soil 
Degradation Stages

AISA (VNIR-SWIR) 
hyperspectral data

Crop canopy 
Reflectance & Temperature

Bare soil Reflectance

PLSR modelling of plant 
physiological parameters:

LAI, grain yield

Green vegetation canopy (growing season, May 2017) Bare soils (under fallow, Aug 2011)

Schmid et al. (2016)

Meteorological 
data (Tair)

AHS VNIR-SWIR-TIR 



Impact of soil degradation on crop productivity
Grain yieldLeaf Area Index



Impact of soil degradation on crop productivity

• Soil surface characteristics, soil erosion stages, land management and 
vegetation conditions are strongly related 

• Estimations of LAI, grain yield & crop water stress (CWSI) are significantly 
related to the soil degradation status

– Lowest LAI, yield and water stress at highly eroded soils and sandy 
accumulation zones

• Outlook: Combined remote sensing based monitoring of soil and 
vegetation resources exploiting upcoming hyperspectral EO datasets 
(PRISMA, EMIT, EnMAP, CHIME, SBG,…)

• 2021-2022:

– 28 PRISMA scenes (19 cloud free)

– 2 EnMAP scenes (commissioning phase)



Synergies of VNIR-SWIR and LWIR Hyperspectral Remote 
Sensing Data for Soil Property Mapping

Study area: Amyntaio, Northern Greece Highly variable soil types VNIR-SWIR LWIR

➢ VNIR-SWIR reflectance,
LWIR emittance 

➢ 532 spectral bands

Research objective

➢ Improvement of soil property (SOC, carbonates) estimation by including LWIR information



Synergies of VNIR-SWIR and LWIR Hyperspectral Remote 
Sensing Data for Soil Property Mapping

❖ “Endmember” soil spectra

❖ Removal of atm. bands & SG filter



Synergies of VNIR-SWIR and LWIR Hyperspectral Remote 
Sensing Data for Soil Property Mapping

700 CaCO3 [%] 

CaCO3

❖ Combined dataset 
improves CaCO3 prediction

❖ Most important spectral 
regions VIS + NIR + LWIR (9-
10 µm)



100 SOC [%] 

Synergies of VNIR-SWIR and LWIR Hyperspectral Remote 
Sensing Data for Soil Property Mapping

SOC

❖ Only small improvement by 
including LWIR information

❖ High SOC content in the 
alluvial plain and Lignite 
mine

❖ Most important spectral 
regions NIR + SWIR II + 
LWIR (< 8.5 µm)



Synergies of VNIR-SWIR and LWIR Hyperspectral Remote 
Sensing Data for Soil Property Mapping

❖ Addition of LWIR information significantly improved spectral models and 
estimation of soil properties (SOC and CaCO3)

Next steps
❖ Analysis of soil texture
❖ Combination and testing of hyperspectral optical and 

multispectral thermal EO sensors (e.g. EnMAP, CHIME, 
SBG, LSTM)

➢ Demonstration of potential for combining optical and 
thermal spectral information for global soil mapping and 
monitoring
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